Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Review ArticleAdult Brain
Open Access

Radiomics in Brain Tumor: Image Assessment, Quantitative Feature Descriptors, and Machine-Learning Approaches

M. Zhou, J. Scott, B. Chaudhury, L. Hall, D. Goldgof, K.W. Yeom, M. Iv, Y. Ou, J. Kalpathy-Cramer, S. Napel, R. Gillies, O. Gevaert and R. Gatenby
American Journal of Neuroradiology February 2018, 39 (2) 208-216; DOI: https://doi.org/10.3174/ajnr.A5391
M. Zhou
aFrom the Stanford Center for Biomedical Informatic Research (M.Z., O.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Zhou
J. Scott
cDepartment of Radiology (J.S., B.C., S.N., R. Gillies, R. Gatenby), Moffitt Cancer Research Center, Tampa, Florida
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J. Scott
B. Chaudhury
cDepartment of Radiology (J.S., B.C., S.N., R. Gillies, R. Gatenby), Moffitt Cancer Research Center, Tampa, Florida
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for B. Chaudhury
L. Hall
dDepartment of Computer Science and Engineering (L.H., D.G.), University of South Florida, Tampa, Florida
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for L. Hall
D. Goldgof
dDepartment of Computer Science and Engineering (L.H., D.G.), University of South Florida, Tampa, Florida
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for D. Goldgof
K.W. Yeom
bDepartment of Radiology (K.W.Y., M.I.), Stanford University, Stanford, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for K.W. Yeom
M. Iv
bDepartment of Radiology (K.W.Y., M.I.), Stanford University, Stanford, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Iv
Y. Ou
eDepartment of Radiology (Y.O., J.K.-C.), Massachusetts General Hospital, Boston, Massachusetts.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Y. Ou
J. Kalpathy-Cramer
eDepartment of Radiology (Y.O., J.K.-C.), Massachusetts General Hospital, Boston, Massachusetts.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J. Kalpathy-Cramer
S. Napel
cDepartment of Radiology (J.S., B.C., S.N., R. Gillies, R. Gatenby), Moffitt Cancer Research Center, Tampa, Florida
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S. Napel
R. Gillies
cDepartment of Radiology (J.S., B.C., S.N., R. Gillies, R. Gatenby), Moffitt Cancer Research Center, Tampa, Florida
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for R. Gillies
O. Gevaert
aFrom the Stanford Center for Biomedical Informatic Research (M.Z., O.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for O. Gevaert
R. Gatenby
cDepartment of Radiology (J.S., B.C., S.N., R. Gillies, R. Gatenby), Moffitt Cancer Research Center, Tampa, Florida
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for R. Gatenby
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Gillies RJ,
    2. Kinahan PE,
    3. Hricak H
    . Radiomics: images are more than pictures, they are data. Radiology 2016;278:563–77 doi:10.1148/radiol.2015151169 pmid:26579733
    CrossRefPubMed
  2. 2.↵
    1. Kumar V,
    2. Gu YH,
    3. Basu S, et al
    . Radiomics: the process and the challenges. Magn Reson Imaging 2012;30:1234–48 doi:10.1016/j.mri.2012.06.010 pmid:22898692
    CrossRefPubMed
  3. 3.↵
    1. Ludwig JA,
    2. Weinstein JN
    . Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer 2005;5:845–56 doi:10.1038/nrc1739 pmid:16239904
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Prior FW,
    2. Clark K,
    3. Commean P, et al
    . TCIA: an information resource to enable open science. In: Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Osaka, Japan. July 3–7, 2013:1282–85
  5. 5.↵
    1. Zhou M,
    2. Chaudhury B,
    3. Hall LO, et al
    . Identifying spatial imaging biomarkers of glioblastoma multiforme for survival group prediction. J Magn Reson Imaging 2016;46:115–23
  6. 6.↵
    1. Aerts HJ,
    2. Velazquez ER,
    3. Leijenaar RTH, et al
    . Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 2014;5:4006 doi:10.1038/ncomms5006 pmid:24892406
    CrossRefPubMed
  7. 7.↵
    1. Gutman DA,
    2. Cooper LA,
    3. Hwang SN, et al
    . MR imaging predictors of molecular profile and survival: multi-institutional study of the TCGA glioblastoma data set. Radiology 2013;267:560–69 doi:10.1148/radiol.13120118 pmid:23392431
    CrossRefPubMedWeb of Science
  8. 8.↵
    1. Kotrotsou A,
    2. Zinn PO,
    3. Colen RR
    . Radiomics in brain tumors: an emerging technique for characterization of tumor environment. Magn Reson Imaging Clin North Am 2016;24:719–29 doi:10.1016/j.mric.2016.06.006 pmid:27742112
    CrossRefPubMed
  9. 9.↵
    1. Jaffe CC
    . Imaging and genomics: is there a synergy? Radiology 2012;264:329–31 doi:10.1148/radiol.12120871 pmid:22821693
    CrossRefPubMed
  10. 10.↵
    1. Michaelis LC,
    2. Ratain MJ
    . Measuring response in a post-RECIST world: from black and white to shades of grey. Nat Rev Cancer 2006;6:409–14 doi:10.1038/nrc1883 pmid:16633367
    CrossRefPubMed
  11. 11.↵
    1. Kheifets LI
    . Electric and magnetic field exposure and brain cancer: a review. Bioelectromagnetics 2001;(suppl 5):S120–31 pmid:11170122
    PubMed
  12. 12.↵
    1. Gatenby RA,
    2. Grove O,
    3. Gillies RJ
    . Quantitative imaging in cancer evolution and ecology. Radiology 2013;269:8–15 doi:10.1148/radiol.13122697 pmid:24062559
    CrossRefPubMed
  13. 13.↵
    1. Drevelegas A
    1. Drevelegas A,
    2. Papanikolaou N
    . Imaging modalities in brain tumors. In: Drevelegas A. Imaging of Brain Tumors with Histological Correlations. Berlin: Springer; 2011:13–33
  14. 14.↵
    1. Kickingereder P,
    2. Götz M,
    3. Muschelli J, et al
    . Large-scale radiomic profiling of recurrent glioblastoma identifies an imaging predictor for stratifying anti-angiogenic treatment response. Clin Cancer Res 2016;22:5765–71 doi:10.1158/1078-0432.CCR-16-0702 pmid:27803067
    Abstract/FREE Full Text
  15. 15.↵
    1. Itakura H,
    2. Achrol AS,
    3. Mitchell LA, et al
    . Magnetic resonance image features identify glioblastoma phenotypic subtypes with distinct molecular pathway activities. Sci Transl Med 2015;7:303ra138 doi:10.1126/scitranslmed.aaa7582 pmid:26333934
    Abstract/FREE Full Text
  16. 16.↵
    1. Zhou M,
    2. Hall L,
    3. Goldgof D, et al
    . Radiologically defined ecological dynamics and clinical outcomes in glioblastoma multiforme: preliminary results. Transl Oncol 2014;7:5–13 doi:10.1593/tlo.13730 pmid:24772202
    CrossRefPubMed
  17. 17.↵
    1. Tsuchiya K,
    2. Inaoka S,
    3. Mizutani Y, et al
    . Fast fluid-attenuated inversion-recovery MR of intracranial infections. AJNR Am J Neuroradiol 1997;18:909–13 pmid:9159369
    Abstract/FREE Full Text
  18. 18.↵
    1. Padhani AR,
    2. Liu G,
    3. Koh DM, et al
    . Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 2009;11:102–25 doi:10.1593/neo.81328 pmid:19186405
    CrossRefPubMedWeb of Science
  19. 19.↵
    1. Bitar R,
    2. Leung G,
    3. Perng R, et al
    . MR pulse sequences: what every radiologist wants to know but is afraid to ask. Radiographics 2006;26:513–37 doi:10.1148/rg.262055063 pmid:16549614
    CrossRefPubMedWeb of Science
  20. 20.↵
    1. Lambin P,
    2. Rios-Velazquez E,
    3. Leijenaar R, et al
    . Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 2012;48:441–46 doi:10.1016/j.ejca.2011.11.036 pmid:22257792
    CrossRefPubMedWeb of Science
  21. 21.↵
    1. Ambrosini RD,
    2. Wang P,
    3. O'Dell WG
    . Computer-aided detection of metastatic brain tumors using automated three-dimensional template matching. J Magn Reson Imaging 2010;31:85–93 doi:10.1002/jmri.22009 pmid:20027576
    CrossRefPubMed
  22. 22.↵
    1. Lowe DG
    . Object recognition from local scale-invariant features. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, Corfu, Greece. September 20–25, 1999:1150–57
  23. 23.↵
    1. Ayache N,
    2. Delingette H,
    3. Golland P, et al.
    1. Zikic D,
    2. Glocker B,
    3. Konukoglu E, et al
    . Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel MR. In: Ayache N, Delingette H, Golland P, et al., eds; Medical Image Computing and Computer-Assisted Intervention–MICCAI 2012. Berlin: Springer; 2012:369–76
  24. 24.↵
    1. Reddy KK,
    2. Solmaz B,
    3. Yan P, et al
    . Confidence guided enhancing brain tumor segmentation in multi-parametric MRI. In: Proceedings of the 9th IEEE International Symposium on Biomedical Imaging, Barcelona, Spain. May 2–5, 2012:366–69
  25. 25.↵
    1. Zacharaki EI,
    2. Wang S,
    3. Chawla S, et al
    . Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magn Reson Med 2009;62:1609–18 doi:10.1002/mrm.22147 pmid:19859947
    CrossRefPubMed
  26. 26.↵
    1. Tuytelaars T,
    2. Mikolajczyk K
    . Local invariant feature detectors: a survey. Foundations and Trends in Computer Graphics and Vision 2008;3:177–280
  27. 27.↵
    1. Ojala T,
    2. Pietikäinen M,
    3. Mäenpää T
    . Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 2002;24:971–87 doi:10.1109/TPAMI.2002.1017623
    CrossRefWeb of Science
  28. 28.↵
    1. Heikkilä M,
    2. Pietikäinen M,
    3. Schmid C
    . Description of interest regions with local binary patterns. Pattern Recogition 2009;42:425–36 doi:10.1016/j.patcog.2008.08.014
    CrossRef
  29. 29.↵
    1. Oliva A,
    2. Torralba A
    . Modeling the shape of the scene: a holistic representation of the spatial envelope. International Journal of Computer Vision 2001;42:145–75 doi:10.1023/A:1011139631724
    CrossRefWeb of Science
  30. 30.↵
    1. Kassner A,
    2. Thornhill RE
    . Texture analysis: a review of neurologic MR imaging applications. AJNR Am J Neuroradiol 2010;31:809–16 doi:10.3174/ajnr.A2061 pmid:20395383
    Abstract/FREE Full Text
  31. 31.↵
    1. Aerts HJ,
    2. Velazquez ER,
    3. Leijenaar RT, et al
    . Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 2014;5:4006 doi:10.1038/ncomms5006 pmid:24892406
    CrossRefPubMed
  32. 32.↵
    1. Haralick RM,
    2. Shanmugam K,
    3. Dinstein I
    . Textural features for image classification. IEEE Transactions on Systems Man Cybernetics 1973;Smc3:610–21
  33. 33.↵
    1. Galloway MM
    . Texture analysis using gray level run lengths. Computer Graphics and Image Processing 1975;4:172–79 doi:10.1016/S0146-664X(75)80008-6
    CrossRef
  34. 34.↵
    1. Dalal N,
    2. Triggs B
    . Histograms of oriented gradients for human detection. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, California. June 20–26, 2005:886–93
  35. 35.↵
    1. Ayache N,
    2. Delingette H,
    3. Golland P, et al.
    1. Prasanna P,
    2. Tiwari P,
    3. Madabhushi A
    . Co-occurrence of Local Anisotropic Gradient Orientations (CoLlAGe): distinguishing tumor confounders and molecular subtypes on MRI. In: Ayache N, Delingette H, Golland P, et al., eds. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2012. Berlin: Springer; 2012:369–76
  36. 36.↵
    1. Leijenaar RT,
    2. Carvalho S,
    3. Velazquez ER, et al
    . Stability of FDG-PET radiomics features: an integrated analysis of test-retest and inter-observer variability. Acta Oncol 2013;52:1391–97 doi:10.3109/0284186X.2013.812798 pmid:24047337
    CrossRefPubMed
  37. 37.↵
    1. Yun TJ,
    2. Park CK,
    3. Kim TM, et al
    . Glioblastoma treated with concurrent radiation therapy and temozolomide chemotherapy: differentiation of true progression from pseudoprogression with quantitative dynamic contrast-enhanced MR imaging. Radiology 2015;274:830–40 doi:10.1148/radiol.14132632 pmid:25333475
    CrossRefPubMed
  38. 38.↵
    1. Zhou M,
    2. Hall LO,
    3. Goldgof DB, et al
    . Survival time prediction of patients with glioblastoma multiforme tumors using spatial distance measurement. SPIE Proceedings 2013:8670:86702O doi:10.1117/12.2007699
    CrossRef
  39. 39.↵
    1. Cao Y,
    2. Tsien CI,
    3. Nagesh V, et al
    . Survival prediction in high-grade gliomas by MRI perfusion before and during early stage of RT. Int J Radiat Oncol Biol Phys 2006;64:876–85 doi:10.1016/j.ijrobp.2005.09.001 pmid:16298499
    CrossRefPubMedWeb of Science
  40. 40.↵
    1. Chang PD,
    2. Malone HR,
    3. Bowden SG, et al
    . A multiparametric model for mapping cellularity in glioblastoma using radiographically localized biopsies. AJNR Am J Neuroradiol 2017;38:890–98 doi:10.3174/ajnr.A5112 pmid:28255030
    Abstract/FREE Full Text
  41. 41.↵
    1. Huo J,
    2. Kim HJ,
    3. Pope WB, et al
    . Histogram-based classification with Gaussian mixture modeling for GBM tumor treatment response using ADC map. SPIE Proceedings 2009:7260:72601Y doi:10.1117/12.812923
    CrossRef
  42. 42.↵
    1. Le Bihan D,
    2. Breton E,
    3. Lallemand D, et al
    . MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 1986;161:401–07 doi:10.1148/radiology.161.2.3763909 pmid:3763909
    CrossRefPubMedWeb of Science
  43. 43.↵
    1. Mazurowski MA,
    2. Desjardins A,
    3. Malof JM
    . Imaging descriptors improve the predictive power of survival models for glioblastoma patients. Neuro Oncol 2013;15:1389–94 doi:10.1093/neuonc/nos335 pmid:23396489
    CrossRefPubMed
  44. 44.↵
    1. Zinn PO,
    2. Mahajan B,
    3. Majadan B, et al
    . Radiogenomic mapping of edema/cellular invasion MRI-phenotypes in glioblastoma multiforme. PLoS One 2011;6:e25451 doi:10.1371/journal.pone.0025451 pmid:21998659
    CrossRefPubMed
  45. 45.↵
    1. Macyszyn L,
    2. Akbari H,
    3. Pisapia JM, et al
    . Imaging patterns predict patient survival and molecular subtype in glioblastoma via machine learning techniques. Neuro Oncol 2016;18:417–25 doi:10.1093/neuonc/nov127 pmid:26188015
    CrossRefPubMed
  46. 46.↵
    1. Gevaert O,
    2. Mitchell LA,
    3. Achrol AS, et al
    . Glioblastoma multiforme: exploratory radiogenomic analysis by using quantitative image features. Radiology 2014;273:168–74 doi:10.1148/radiol.14131731 pmid:24827998
    CrossRefPubMedWeb of Science
  47. 47.↵
    1. Cruz JA,
    2. Wishart DS
    . Applications of machine learning in cancer prediction and prognosis. Cancer Inform 2007;2:59–77 pmid:19458758
    PubMed
  48. 48.↵
    1. Shen D,
    2. Wu G,
    3. Suk HI
    . Deep learning in medical image analysis. Annu Rev Biomed Eng 2017;19:221–48 doi:10.1146/annurev-bioeng-071516-044442 pmid:28301734
    CrossRefPubMed
  49. 49.↵
    1. Mitchell T
    . The discipline of machine learning. Carnegie Mellon University, School of Computer Science, Machine Learning Department; 2006. http://docplayer.net/19055685-The-discipline-of-machine-learning.html. Accessed September 26, 2017.
  50. 50.↵
    1. Parmar C,
    2. Grossmann P,
    3. Bussink J, et al
    . Machine learning methods for quantitative radiomic biomarkers. Sci Rep 2015;5:13087 doi:10.1038/srep13087 pmid:26278466
    CrossRefPubMed
  51. 51.↵
    1. Clark MC,
    2. Hall LO,
    3. Goldgof DB, et al
    . Automatic tumor segmentation using knowledge-based techniques. IEEE Trans Med Imaging 1998;17:187–201 doi:10.1109/42.700731 pmid:9688151
    CrossRefPubMedWeb of Science
  52. 52.↵
    1. Menze BH,
    2. Jakab A,
    3. Bauer S, et al
    . The multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Trans Med Imaging 2015;34:1993–2024 doi:10.1109/TMI.2014.2377694 pmid:25494501
    CrossRefPubMed
  53. 53.↵
    1. Cruz-Barbosa R,
    2. Vellido A
    . Semi-supervised analysis of human brain tumours from partially labeled MRS information, using manifold learning models. Int J Neural Syst 2011;21:17–29 doi:10.1142/S0129065711002626 pmid:21243728
    CrossRefPubMed
  54. 54.↵
    1. LeCun Y,
    2. Bengio Y,
    3. Hinton G
    . Deep learning. Nature 2015;521:436–44 doi:10.1038/nature14539 pmid:26017442
    CrossRefPubMed
  55. 55.↵
    1. Szegedy C,
    2. Liu W,
    3. Jia YQ, et al
    . Going deeper with convolutions. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, Florida. June 20–25, 2015:1–9
  56. 56.↵
    1. Deng J,
    2. Dong W,
    3. Socher R, et al
    . ImageNet: a large-scale hierarchical image database. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, Florida. June 20–25, 2015:248–55
  57. 57.↵
    1. Karpathy A,
    2. Toderici G,
    3. Shetty S, et al
    . Large-scale video classification with convolutional neural networks. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Ohio. June 23–28, 2014:1725–32
  58. 58.↵
    1. Shen W,
    2. Zhou M,
    3. Yang F, et al
    . Multi-scale convolutional neural networks for lung nodule classification. Inf Process Med Imaging 2015;24:588–99 pmid:26221705
    PubMed
  59. 59.↵
    1. Shen W,
    2. Zhou M,
    3. Yang F, et al
    . Multi-crop convolutional neural networks for lung nodule malignancy suspiciousness classification. Pattern Recognition 2017;61:663–73 doi:10.1016/j.patcog.2016.05.029
    CrossRef
  60. 60.↵
    1. Setio AA,
    2. Ciompi F,
    3. Litjens G, et al
    . Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks. IEEE Trans Med Imaging 2016;35:1160–69 doi:10.1109/TMI.2016.2536809.69 pmid:26955024
    CrossRefPubMed
  61. 61.↵
    1. Pereira S,
    2. Pinto A,
    3. Alves V, et al
    . Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imaging 2016;35:1240–51 doi:10.1109/TMI.2016.2538465 pmid:26960222
    CrossRefPubMed
  62. 62.↵
    1. Pope WB,
    2. Sayre J,
    3. Perlina A, et al
    . MR imaging correlates of survival in patients with high-grade gliomas. AJNR Am J Neuroradiol 2005;26:2466–74 pmid:16286386
    Abstract/FREE Full Text
  63. 63.↵
    1. Siu A,
    2. Wind JJ,
    3. Iorgulescu JB, et al
    . Radiation necrosis following treatment of high grade glioma: a review of the literature and current understanding. Acta Neurochir (Wien) 2012;154:191–201; discussion 201 doi:10.1007/s00701-011-1228-6 pmid:22130634
    CrossRefPubMedWeb of Science
  64. 64.↵
    1. Hu X,
    2. Wong KK,
    3. Young GS, et al
    . Support vector machine multiparametric MRI identification of pseudoprogression from tumor recurrence in patients with resected glioblastoma. J Magn Reson Imaging 2011;33:296–305 doi:10.1002/jmri.22432 pmid:21274970
    CrossRefPubMed
  65. 65.↵
    1. Chu HH,
    2. Choi SH,
    3. Ryoo I, et al
    . Differentiation of true progression from pseudoprogression in glioblastoma treated with radiation therapy and concomitant temozolomide: comparison study of standard and high-b-value diffusion-weighted imaging. Radiology 2013;269:831–40 doi:10.1148/radiol.13122024 pmid:23771912
    CrossRefPubMedWeb of Science
  66. 66.↵
    1. Chang PD,
    2. Chow DS,
    3. Yang PH, et al
    . Predicting glioblastoma recurrence by early changes in the apparent diffusion coefficient value and signal intensity on FLAIR images. AJR Am J Roentgenol. 2017;208:57–65 doi:10.2214/AJR.16.16234 pmid:27726412
    CrossRefPubMed
  67. 67.↵
    1. Ellingson BM,
    2. Cloughesy TF,
    3. Lai A, et al
    . Quantitative volumetric analysis of conventional MRI response in recurrent glioblastoma treated with bevacizumab. Neuro Oncol 2011;13:401–09 doi:10.1093/neuonc/noq206 pmid:21324937
    CrossRefPubMed
  68. 68.↵
    1. Zhou M,
    2. Hall LO,
    3. Goldgof DB, et al
    . Decoding brain cancer dynamics: a quantitative histogram-based approach using temporal MRI. SPIE Proceedings 2015;9414
  69. 69.↵
    1. Hygino da Cruz LC Jr.,
    2. Rodriguez I,
    3. Domingues RC, et al
    . Pseudoprogression and pseudoresponse: imaging challenges in the assessment of posttreatment glioma. AJNR Am J Neuroradiol 2011;32:1978–85 doi:10.3174/ajnr.A2397 pmid:21393407
    Abstract/FREE Full Text
  70. 70.↵
    1. Tibshirani R
    . Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 1996;58:267–88
    Web of Science
  71. 71.↵
    1. Gevaert O,
    2. Xu J,
    3. Hoang CD, et al
    . Non-small cell lung cancer: identifying prognostic imaging biomarkers by leveraging public gene expression microarray data–methods and preliminary results. Radiology 2012;264:387–96 doi:10.1148/radiol.12111607 pmid:22723499
    CrossRefPubMed
  72. 72.↵
    1. Shin HC,
    2. Roth HR,
    3. Gao MC, et al
    . Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 2016;35:1285–98 doi:10.1109/TMI.2016.2528162 pmid:26886976
    CrossRefPubMed
  73. 73.↵
    1. Shen W,
    2. Zhou M,
    3. Yang F, et al
    . Learning from experts: developing transferable deep features for patient-level lung cancer prediction. In: Proceedings of the 19th Medical Image Computing and Computer-Assisted Intervention Conference, Athens, Greece. October 17–21, 2016:124–31
  74. 74.↵
    1. Mamoshina P,
    2. Vieira A,
    3. Putin E, et al
    . Applications of deep learning in biomedicine. Mol Pharm 2016;13:1445–54 doi:10.1021/acs.molpharmaceut.5b00982 pmid:27007977
    CrossRefPubMed
  75. 75.↵
    1. Manyika J,
    2. Chui M,
    3. Brown B, et al
    . Big data: the next frontier for innovation, competition, and productivity. McKinsey Global Institute. 2011. http://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/big-data-the-next-frontier-for-innovation. Accessed September 26, 2017.
  76. 76.↵
    1. Bates DW,
    2. Saria S,
    3. Ohno-Machado L, et al
    . Big data in health care: using analytics to identify and manage high-risk and high-cost patients. Health Aff (Millwood) 2014;33:1123–31 doi:10.1377/hlthaff.2014.0041 pmid:25006137
    Abstract/FREE Full Text
  77. 77.↵
    Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008;455:1061–68 doi:10.1038/nature07385 pmid:18772890
    CrossRefPubMedWeb of Science
  78. 78.↵
    1. Kalpathy-Cramer J,
    2. Freymann JB,
    3. Kirby JS, et al
    . Quantitative imaging network: data sharing and competitive algorithm validation leveraging The Cancer Imaging Archive. Transl Oncol 2014;7:147–52 doi:10.1593/tlo.13862 pmid:24772218
    CrossRefPubMed
  79. 79.↵
    1. Badve C,
    2. Yu A,
    3. Dastmalchian S, et al
    . MR fingerprinting of adult brain tumors: initial experience. AJNR Am J Neuroradiol 2017;38:492–99 doi:10.3174/ajnr.A5035 pmid:28034994
    Abstract/FREE Full Text
  80. 80.↵
    1. Aerts HJ
    . The potential of radiomic-based phenotyping in precision medicine: a review. JAMA Oncol 2016;2:1636–42 doi:10.1001/jamaoncol.2016.2631 pmid:27541161
    CrossRefPubMed
  81. 81.↵
    1. O'Connor JP,
    2. Aboagye EO,
    3. Adams JE, et al
    . Imaging biomarker roadmap for cancer studies. Nat Rev Clin Oncol 2017;14:169–86 doi:10.1038/nrclinonc.2016 pmid:27725679
    CrossRefPubMed
  82. 82.
    1. Ellingson B,
    2. Sahebjam S,
    3. Kim HJ, et al
    . Pretreatment ADC histogram analysis is a predictive imaging biomarker for bevacizumab treatment but not chemotherapy in recurrent glioblastoma. AJNR Am J Neuroradiol 2014;35:673–79 doi:10.3174/ajnr.A3748 pmid:24136647
    Abstract/FREE Full Text
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 39 (2)
American Journal of Neuroradiology
Vol. 39, Issue 2
1 Feb 2018
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Radiomics in Brain Tumor: Image Assessment, Quantitative Feature Descriptors, and Machine-Learning Approaches
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
M. Zhou, J. Scott, B. Chaudhury, L. Hall, D. Goldgof, K.W. Yeom, M. Iv, Y. Ou, J. Kalpathy-Cramer, S. Napel, R. Gillies, O. Gevaert, R. Gatenby
Radiomics in Brain Tumor: Image Assessment, Quantitative Feature Descriptors, and Machine-Learning Approaches
American Journal of Neuroradiology Feb 2018, 39 (2) 208-216; DOI: 10.3174/ajnr.A5391

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Radiomics in Brain Tumor: Image Assessment, Quantitative Feature Descriptors, and Machine-Learning Approaches
M. Zhou, J. Scott, B. Chaudhury, L. Hall, D. Goldgof, K.W. Yeom, M. Iv, Y. Ou, J. Kalpathy-Cramer, S. Napel, R. Gillies, O. Gevaert, R. Gatenby
American Journal of Neuroradiology Feb 2018, 39 (2) 208-216; DOI: 10.3174/ajnr.A5391
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Conclusions
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • From histology to macroscale function in the human amygdala
  • Image-localized biopsy mapping of brain tumor heterogeneity: A single-center study protocol
  • Evolving Role and Translation of Radiomics and Radiogenomics in Adult and Pediatric Neuro-Oncology
  • Iodine Maps from Dual-Energy CT to Predict Extrathyroidal Extension and Recurrence in Papillary Thyroid Cancer Based on a Radiomics Approach
  • Deep Learning for Pediatric Posterior Fossa Tumor Detection and Classification: A Multi-Institutional Study
  • Deep Transfer Learning and Radiomics Feature Prediction of Survival of Patients with High-Grade Gliomas
  • Artificial Intelligence in Obstetrics and Gynaecology: Is This the Way Forward?
  • Radiogenomics in Medulloblastoma: Can the Human Brain Compete with Artificial Intelligence and Machine Learning?
  • Integrating deep and radiomics features in cancer bioimaging
  • Identifying Recurrent Malignant Glioma after Treatment Using Amide Proton Transfer-Weighted MR Imaging: A Validation Study with Image-Guided Stereotactic Biopsy
  • MR Imaging-Based Radiomic Signatures of Distinct Molecular Subgroups of Medulloblastoma
  • Crossref (284)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Single- and Multifraction Stereotactic Radiosurgery Dose/Volume Tolerances of the Brain
    Michael T. Milano, Jimm Grimm, Andrzej Niemierko, Scott G. Soltys, Vitali Moiseenko, Kristin J. Redmond, Ellen Yorke, Arjun Sahgal, Jinyu Xue, Anand Mahadevan, Alexander Muacevic, Lawrence B. Marks, Lawrence R. Kleinberg
    International Journal of Radiation Oncology*Biology*Physics 2021 110 1
  • Multiclass magnetic resonance imaging brain tumor classification using artificial intelligence paradigm
    Gopal S. Tandel, Antonella Balestrieri, Tanay Jujaray, Narender N. Khanna, Luca Saba, Jasjit S. Suri
    Computers in Biology and Medicine 2020 122
  • Brain Tumor Analysis Empowered with Deep Learning: A Review, Taxonomy, and Future Challenges
    Muhammad Waqas Nadeem, Mohammed A. Al Ghamdi, Muzammil Hussain, Muhammad Adnan Khan, Khalid Masood Khan, Sultan H. Almotiri, Suhail Ashfaq Butt
    Brain Sciences 2020 10 2
  • Role of machine learning in medical research: A survey
    Arunim Garg, Vijay Mago
    Computer Science Review 2021 40
  • Radiomics and radiogenomics in gliomas: a contemporary update
    Gagandeep Singh, Sunil Manjila, Nicole Sakla, Alan True, Amr H. Wardeh, Niha Beig, Anatoliy Vaysberg, John Matthews, Prateek Prasanna, Vadim Spektor
    British Journal of Cancer 2021 125 5
  • Classification of the glioma grading using radiomics analysis
    Hwan-ho Cho, Seung-hak Lee, Jonghoon Kim, Hyunjin Park
    PeerJ 2018 6
  • Distinguishing True Progression From Radionecrosis After Stereotactic Radiation Therapy for Brain Metastases With Machine Learning and Radiomics
    Luke Peng, Vishwa Parekh, Peng Huang, Doris D. Lin, Khadija Sheikh, Brock Baker, Talia Kirschbaum, Francesca Silvestri, Jessica Son, Adam Robinson, Ellen Huang, Heather Ames, Jimm Grimm, Linda Chen, Colette Shen, Michael Soike, Emory McTyre, Kristin Redmond, Michael Lim, Junghoon Lee, Michael A. Jacobs, Lawrence Kleinberg
    International Journal of Radiation Oncology*Biology*Physics 2018 102 4
  • Identifying Recurrent Malignant Glioma after Treatment Using Amide Proton Transfer-Weighted MR Imaging: A Validation Study with Image-Guided Stereotactic Biopsy
    Shanshan Jiang, Charles G. Eberhart, Michael Lim, Hye-Young Heo, Yi Zhang, Lindsay Blair, Zhibo Wen, Matthias Holdhoff, Doris Lin, Peng Huang, Huamin Qin, Alfredo Quinones-Hinojosa, Jon D. Weingart, Peter B. Barker, Martin G. Pomper, John Laterra, Peter C.M. van Zijl, Jaishri O. Blakeley, Jinyuan Zhou
    Clinical Cancer Research 2019 25 2
  • An ensemble learning approach for brain cancer detection exploiting radiomic features
    Luca Brunese, Francesco Mercaldo, Alfonso Reginelli, Antonella Santone
    Computer Methods and Programs in Biomedicine 2020 185
  • MR Imaging–Based Radiomic Signatures of Distinct Molecular Subgroups of Medulloblastoma
    M. Iv, M. Zhou, K. Shpanskaya, S. Perreault, Z. Wang, E. Tranvinh, B. Lanzman, S. Vajapeyam, N.A. Vitanza, P.G. Fisher, Y.J. Cho, S. Laughlin, V. Ramaswamy, M.D. Taylor, S.H. Cheshier, G.A. Grant, T. Young Poussaint, O. Gevaert, K.W. Yeom
    American Journal of Neuroradiology 2019 40 1

More in this TOC Section

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • Clinical Outcomes After Chiari I Decompression
  • Segmentation of Brain Metastases with BLAST
Show more ADULT BRAIN

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire