Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • Advancing NeuroMRI with High-Relaxivity Contrast Agents
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • Advancing NeuroMRI with High-Relaxivity Contrast Agents
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates


Improved Turnaround Times | Median time to first decision: 12 days

Research ArticleAdult Brain
Open Access

Reliability of White Matter Microstructural Changes in HIV Infection: Meta-Analysis and Confirmation

E.E. O'Connor, A. Jaillard, F. Renard and T.A. Zeffiro
American Journal of Neuroradiology August 2017, 38 (8) 1510-1519; DOI: https://doi.org/10.3174/ajnr.A5229
E.E. O'Connor
aFrom the Department of Radiology and Nuclear Medicine (E.E.O.), University of Maryland Medical System, Baltimore, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for E.E. O'Connor
A. Jaillard
bUnité IRM 3T-Recherche–IRMaGe-Inserm US 17/CNRS UMS 3552 (A.J., F.R.)
cLaboratoire MATICE-Pôle Recherche (A.J., F.R.), Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Jaillard
F. Renard
bUnité IRM 3T-Recherche–IRMaGe-Inserm US 17/CNRS UMS 3552 (A.J., F.R.)
cLaboratoire MATICE-Pôle Recherche (A.J., F.R.), Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for F. Renard
T.A. Zeffiro
dNeurometrika (T.A.Z.), Potomac, Maryland
eDepartment of Human Development (T.A.Z.), University of Maryland College Park, Maryland.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for T.A. Zeffiro
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

REFERENCES

  1. 1.↵
    1. Lima VD,
    2. Hogg RS,
    3. Harrigan PR, et al
    . Continued improvement in survival among HIV-infected individuals with newer forms of highly active antiretroviral therapy. AIDS 2007;21:685–92 doi:10.1097/QAD.0b013e32802ef30c pmid:17413689
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. Hammer SM,
    2. Squires KE,
    3. Hughes MD, et al
    . A controlled trial of two nucleoside analogues plus indinavir in persons with human immunodeficiency virus infection and CD4 cell counts of 200 per cubic millimeter or less: AIDS Clinical Trials Group 320 Study Team. N Engl J Med 1997;337:725–33 doi:10.1056/NEJM199709113371101 pmid:9287227
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Simioni S,
    2. Cavassini M,
    3. Annoni JM, et al
    . Cognitive dysfunction in HIV patients despite long-standing suppression of viremia. AIDS 2010;24:1243–50 doi:10.1097/QAD.0b013e3283354a7b pmid:19996937
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Cohen RA,
    2. Boland R,
    3. Paul R, et al
    . Neurocognitive performance enhanced by highly active antiretroviral therapy in HIV-infected women. AIDS 2001;15:341–45 doi:10.1097/00002030-200102160-00007 pmid:11273214
    CrossRefPubMedWeb of Science
  5. 5.↵
    1. Cysique LA,
    2. Maruff P,
    3. Brew BJ
    . Prevalence and pattern of neuropsychological impairment in human immunodeficiency virus–infected/acquired immunodeficiency syndrome (HIV/AIDS) patients across pre-and post-highly active antiretroviral therapy eras: a combined study of two cohorts clinical report. J Neurovirol 2004;10:350–57 doi:10.1080/13550280490521078 pmid:15765806
    CrossRefPubMedWeb of Science
  6. 6.↵
    1. Giancola ML,
    2. Lorenzini P,
    3. Balestra P, et al
    . Neuroactive antiretroviral drugs do not influence neurocognitive performance in less advanced HIV-infected patients responding to highly active antiretroviral therapy. J Acquir Immune Defic Syndr 2006;41:332–37 doi:10.1097/01.qai.0000197077.64021.07 pmid:16540934
    CrossRefPubMedWeb of Science
  7. 7.↵
    1. Tozzi V,
    2. Balestra P,
    3. Bellagamba R, et al
    . Persistence of neuropsychologic deficits despite long-term highly active antiretroviral therapy in patients with HIV-related neurocognitive impairment: prevalence and risk factors. J Acquir Immune Defic Syndr 2007;45:174–82 doi:10.1097/QAI.0b013e318042e1ee pmid:17356465
    CrossRefPubMedWeb of Science
  8. 8.↵
    1. Maki PM,
    2. Rubin LH,
    3. Valcour V, et al
    . Cognitive function in women with HIV: findings from the Women's Interagency HIV Study. Neurology 2015;84:231–40 doi:10.1212/WNL.0000000000001151 pmid:25540304
    CrossRefPubMed
  9. 9.↵
    1. Heaton RK,
    2. Franklin DR,
    3. Ellis RJ, et al
    . HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neurovirol 2011;17:3–16 doi:10.1007/s13365-010-0006-1 pmid:21174240
    CrossRefPubMedWeb of Science
  10. 10.↵
    1. Gray F,
    2. Scaravilli F,
    3. Everall I, et al
    . Neuropathology of early HIV-1 infection. Brain Pathol 1996;6:1–15 doi:10.1111/j.1750-3639.1996.tb00775.x pmid:8866743
    CrossRefPubMedWeb of Science
  11. 11.↵
    1. Jellinger K,
    2. Setinek U,
    3. Drlicek M, et al
    . Neuropathology and general autopsy findings in AIDS during the last 15 years. Acta Neuropathol 2000;100:213–20 doi:10.1007/s004010000245 pmid:10963370
    CrossRefPubMedWeb of Science
  12. 12.↵
    1. Chan P,
    2. Brew BJ
    . HIV associated neurocognitive disorders in the modern antiviral treatment era: prevalence, characteristics, biomarkers, and effects of treatment. Curr HIV/AIDS Rep 2014;11:317–24 doi:10.1007/s11904-014-0221-0 pmid:24966139
    CrossRefPubMed
  13. 13.↵
    1. Marra CM,
    2. Zhao Y,
    3. Clifford DB, et al
    ; AIDS Clinical Trials Group 736 Study Team. Impact of combination antiretroviral therapy on cerebrospinal fluid HIV RNA and neurocognitive performance. AIDS 2009;23:1359–66 doi:10.1097/QAD.0b013e32832c4152 pmid:19424052
    CrossRefPubMedWeb of Science
  14. 14.↵
    1. Vitiello B,
    2. Goodkin K,
    3. Ashtana D, et al
    . HIV-1 RNA concentration and cognitive performance in a cohort of HIV-positive people. AIDS 2007;21:1415–22 doi:10.1097/QAD.0b013e328220e71a pmid:17589187
    CrossRefPubMed
  15. 15.↵
    1. Robertson KR,
    2. Smurzynski M,
    3. Parsons TD, et al
    . The prevalence and incidence of neurocognitive impairment in the HAART era. AIDS 2007;21:1915–21 doi:10.1097/QAD.0b013e32828e4e27 pmid:17721099
    CrossRefPubMedWeb of Science
  16. 16.↵
    1. Cysique LA,
    2. Brew BJ
    . Prevalence of non-confounded HIV-associated neurocognitive impairment in the context of plasma HIV RNA suppression. J Neurovirol 2011;17:176–83 doi:10.1007/s13365-011-0021-x pmid:21416169
    CrossRefPubMed
  17. 17.↵
    1. Cysique LA,
    2. Maruff P,
    3. Brew BJ
    . Variable benefit in neuropsychological function in HIV-infected HAART-treated patients. Neurology 2006;66:1447–50 doi:10.1212/01.wnl.0000210477.63851.d3 pmid:16682686
    Abstract/FREE Full Text
  18. 18.↵
    1. Sevigny J,
    2. Albert S,
    3. McDermott M, et al
    . Evaluation of HIV RNA and markers of immune activation as predictors of HIV-associated dementia. Neurology 2004;63:2084–90 doi:10.1212/01.WNL.0000145763.68284.15 pmid:15596754
    Abstract/FREE Full Text
  19. 19.↵
    1. Grund B,
    2. Wright EJ,
    3. Brew BJ, et al
    ; INSIGHT SMART Study Group. Improved neurocognitive test performance in both arms of the SMART study: impact of practice effect. J Neurovirol 2013;19:383–92 doi:10.1007/s13365-013-0190-x pmid:23943468
    CrossRefPubMed
  20. 20.↵
    1. Woods SP,
    2. Moore DJ,
    3. Weber E, et al
    . Cognitive neuropsychology of HIV-associated neurocognitive disorders. Neuropsychol Rev 2009;19:152–68 doi:10.1007/s11065-009-9102-5 pmid:19462243
    CrossRefPubMed
  21. 21.↵
    1. Thurnher MM,
    2. Castillo M,
    3. Stadler A, et al
    . Diffusion-tensor MR imaging of the brain in human immunodeficiency virus–positive patients. AJNR Am J Neuroradiol 2005;26:2275–81 pmid:16219833
    Abstract/FREE Full Text
  22. 22.↵
    1. Budka H
    . Human immunodeficiency virus (HIV)-induced disease of the central nervous system: pathology and implications for pathogenesis. Acta Neuropathol 1989;77:225–36 doi:10.1007/BF00687573 pmid:2538039
    CrossRefPubMed
  23. 23.↵
    1. Leite SC,
    2. Corrêa DG,
    3. Doring TM, et al
    . Diffusion tensor MRI evaluation of the corona radiata, cingulate gyri, and corpus callosum in HIV patients. J Magn Reson Imaging 2013;38:1488–93 doi:10.1002/jmri.24129 pmid:23559497
    CrossRefPubMed
  24. 24.↵
    1. Ragin AB,
    2. Wu Y,
    3. Gao Y, et al
    . Brain alterations within the first 100 days of HIV infection. Ann Clin Transl Neurol 2015;2:12–21 doi:10.1002/acn3.136 pmid:25642430
    CrossRefPubMed
  25. 25.↵
    1. Kamat R,
    2. Brown GG,
    3. Bolden K, et al
    . Apathy is associated with white matter abnormalities in anterior, medial brain regions in persons with HIV infection. J Clin Exp Neuropsychol 2014;36:854–66 doi:10.1080/13803395.2014.950636 pmid:25275424
    CrossRefPubMed
  26. 26.↵
    1. Zhu T,
    2. Zhong J,
    3. Hu R, et al
    . Patterns of white matter injury in HIV infection after partial immune reconstitution: a DTI tract-based spatial statistics study. J Neurovirol 2013;19:10–23 doi:10.1007/s13365-012-0135-9 pmid:23179680
    CrossRefPubMed
  27. 27.↵
    1. Stubbe-Drger B,
    2. Deppe M,
    3. Mohammadi S, et al
    ; German Competence Network HIV/AIDS. Early microstructural white matter changes in patients with HIV: a diffusion tensor imaging study. BMC Neurol 2012;12:23 doi:10.1186/1471-2377-12-23 pmid:22548835
    CrossRefPubMed
  28. 28.↵
    1. Hoare J,
    2. Fouche JP,
    3. Spottiswoode B, et al
    . White-matter damage in Clade C HIV-positive subjects: a diffusion tensor imaging study. J Neuropsychiatry Clin Neurosci 2011;23:308–15 doi:10.1176/jnp.23.3.jnp308 pmid:21948892
    CrossRefPubMedWeb of Science
  29. 29.↵
    1. Pfefferbaum A,
    2. Rosenbloom MJ,
    3. Adalsteinsson E, et al
    . Diffusion tensor imaging with quantitative fibre tracking in HIV infection and alcoholism comorbidity: synergistic white matter damage. Brain 2007;130:48–64 pmid:16959813
    CrossRefPubMedWeb of Science
  30. 30.↵
    1. Pomara N,
    2. Crandall DT,
    3. Choi SJ, et al
    . White matter abnormalities in HIV-1 infection: a diffusion tensor imaging study. Psychiatry Res 2001;106:15–24 doi:10.1016/S0925-4927(00)00082-2 pmid:11231096
    CrossRefPubMedWeb of Science
  31. 31.↵
    1. Filippi CG,
    2. Ulug AM,
    3. Ryan E, et al
    . Diffusion tensor imaging of patients with HIV and normal-appearing white matter on MR images of the brain. AJNR Am J Neuroradiol 2001;22:277–83 pmid:11156769
    Abstract/FREE Full Text
  32. 32.↵
    1. Wright PW,
    2. Vaida FF,
    3. Fernández RJ, et al
    . Cerebral white matter integrity during primary HIV infection. AIDS 2015;29:433–42 doi:10.1097/QAD.0000000000000560 pmid:25513818
    CrossRefPubMed
  33. 33.↵
    1. Chang L,
    2. Wong V,
    3. Nakama H, et al
    . Greater than age-related changes in brain diffusion of HIV patients after 1 year. J Neuroimmune Pharmacol 2008;3:265–74 doi:10.1007/s11481-008-9120-8 pmid:18709469
    CrossRefPubMedWeb of Science
  34. 34.↵
    1. Wright P,
    2. Heaps J,
    3. Shimony JS, et al
    . The effects of HIV and combination antiretroviral therapy on white matter integrity. AIDS 2012;26:1501–08 doi:10.1097/QAD.0b013e3283550bec pmid:22546990
    CrossRefPubMed
  35. 35.↵
    1. Seider TR,
    2. Gongvatana A,
    3. Woods AJ, et al
    . Age exacerbates HIV-associated white matter abnormalities. J Neurovirol 2016;22:201–12 doi:10.1007/s13365-015-0386-3 pmid:26446690
    CrossRefPubMed
  36. 36.↵
    1. Schwarzer G,
    2. Carpenter JR,
    3. Rücker G
    . Meta-Analysis with R. New York: Springer-Verlag; 2015
  37. 37.↵
    1. Higgins JP,
    2. Thompson SG,
    3. Deeks JJ, et al
    . Measuring inconsistency in meta-analyses. BMJ 2003;327:557–60 doi:10.1136/bmj.327.7414.557 pmid:12958120
    FREE Full Text
  38. 38.↵
    1. Higgins JP,
    2. Thompson SG
    . Controlling the risk of spurious findings from meta-regression. Stat Med 2004;23:1663–82 doi:10.1002/sim.1752 pmid:15160401
    CrossRefPubMedWeb of Science
  39. 39.↵
    1. Sacktor NC,
    2. Wong M,
    3. Nakasujja N, et al
    . The International HIV Dementia Scale: a new rapid screening test for HIV dementia. AIDS 2005;19:1367–74 pmid:16103767
    PubMedWeb of Science
  40. 40.↵
    1. Brandt J
    . The Hopkins Verbal Learning Test: development of a new memory test with six equivalent forms. Clinical Neuropsychologist 1991;5:125–42 doi:10.1080/13854049108403297
    CrossRef
  41. 41.↵
    1. Robinson-Papp J,
    2. Byrd D,
    3. Mindt MR, et al
    ; Manhattan HIV Brain Bank. Motor function and human immunodeficiency virus–associated cognitive impairment in a highly active antiretroviral therapy–era cohort. Arch Neurol 2008;65:1096–101 doi:10.1001/archneur.65.8.1096 pmid:18695060
    CrossRefPubMedWeb of Science
  42. 42.↵
    1. Fahn S,
    2. Marsden CD,
    3. Goldstein M,
    4. Calne DB
    1. Fahn S,
    2. Elton RL
    , UPDRS program members. Unified Parkinsons Disease Rating Scale. In: Fahn S, Marsden CD, Goldstein M, Calne DB, eds. Recent Developments in Parkinsons Disease. Vol 2. Florham Park, NJ: Macmillan Healthcare Information; 1987:153–63
  43. 43.↵
    1. Trites R
    . Grooved Pegboard Test. Lafayette: Lafayette Instrument; 1989
  44. 44.↵
    1. Smith SM,
    2. Jenkinson M,
    3. Woolrich MW, et al
    . Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 2004;23(suppl 1):S208–19 doi:10.1016/j.neuroimage.2004.07.051 pmid:15501092
    CrossRefPubMedWeb of Science
  45. 45.↵
    1. Andersson JL,
    2. Jenkinson M,
    3. Smith S
    . Non-linear registration, aka Spatial normalisation FMRIB technical report TR07JA2. FMRIB Centre, Oxford, UK. June 28, 2007. https://www.fmrib.ox.ac.uk/datasets/techrep/tr07ja2/tr07ja2.pdf. Accessed May 2, 2017.
  46. 46.↵
    1. Smith SM,
    2. Jenkinson M,
    3. Johansen-Berg H, et al
    . Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 2006;31:1487–505 doi:10.1016/j.neuroimage.2006.02.024 pmid:16624579
    CrossRefPubMedWeb of Science
  47. 47.↵
    1. Oishi K,
    2. Faria AV,
    3. van Zijl PC, et al
    . MRI Atlas of Human White Matter. Amsterdam: Academic Press; 2010
  48. 48.↵
    1. Sexton CE,
    2. Walhovd KB,
    3. Storsve AB, et al
    . Accelerated changes in white matter microstructure during aging: a longitudinal diffusion tensor imaging study. J Neurosci 2014;34:15425–36 doi:10.1523/JNEUROSCI.0203-14.2014 pmid:25392509
    Abstract/FREE Full Text
  49. 49.↵
    1. Broderick DF,
    2. Wippold FJ 2nd.,
    3. Clifford DB, et al
    . White matter lesions and cerebral atrophy on MR images in patients with and without AIDS dementia complex. AJR Am J Roentgenol 1993;161:177–81 doi:10.2214/ajr.161.1.8517298 pmid:8517298
    CrossRefPubMed
  50. 50.↵
    1. Jarvik JG,
    2. Hesselink JR,
    3. Kennedy C, et al
    . Acquired immunodeficiency syndrome: magnetic resonance patterns of brain involvement with pathologic correlation. Arch Neurol 1988;45:731–36 doi:10.1001/archneur.1988.00520310037014 pmid:3390027
    CrossRefPubMedWeb of Science
  51. 51.↵
    1. Power C,
    2. Kong PA,
    3. Crawford TO, et al
    . Cerebral white matter changes in acquired immunodeficiency syndrome dementia: alterations of the blood-brain barrier. Ann Neurol 1993;34:339–50 doi:10.1002/ana.410340307 pmid:7689819
    CrossRefPubMedWeb of Science
  52. 52.↵
    1. Chang L,
    2. Ernst T,
    3. Leonido-Yee M, et al
    . Cerebral metabolite abnormalities correlate with clinical severity of HIV-1 cognitive motor complex. Neurology 1999;52:100–08 doi:10.1212/WNL.52.1.100 pmid:9921855
    Abstract/FREE Full Text
  53. 53.↵
    1. Mohamed MA,
    2. Barker PB,
    3. Skolasky RL, et al
    . Brain metabolism and cognitive impairment in HIV infection: a 3-T magnetic resonance spectroscopy study. Magn Reson Imaging 2010;28:1251–57 doi:10.1016/j.mri.2010.06.007 pmid:20688449
    CrossRefPubMedWeb of Science
  54. 54.↵
    1. Cardenas VA,
    2. Meyerhoff DJ,
    3. Studholme C, et al
    . Evidence for ongoing brain injury in human immunodeficiency virus-positive patients treated with antiretroviral therapy. J Neurovirol 2009;15:324–33 doi:10.1080/13550280902973960 pmid:19499454
    CrossRefPubMedWeb of Science
  55. 55.↵
    1. McArthur JC,
    2. Kumar AJ,
    3. Johnson DW, et al
    . Incidental white matter hyperintensities on magnetic resonance imaging in HIV-1 infection; multicenter AIDS Cohort Study. J Acquir Immune Defic Syndr 1990;3:252–59 pmid:2406415
    PubMedWeb of Science
  56. 56.↵
    1. Ragin AB,
    2. Wu Y,
    3. Storey P, et al
    . Diffusion tensor imaging of subcortical brain injury in patients infected with human immunodeficiency virus. J Neurovirol 2005;11:292–98 doi:10.1080/13550280590953799 pmid:16036809
    CrossRefPubMedWeb of Science
  57. 57.↵
    1. Ragin A,
    2. Storey P,
    3. Cohen B, et al
    . Disease burden in HIV-associated cognitive impairment: a study of whole-brain imaging measures. Neurology 2004;63:2293–97 doi:10.1212/01.WNL.0000147477.44791.BD pmid:15623689
    Abstract/FREE Full Text
  58. 58.↵
    1. Wang B,
    2. Liu Z,
    3. Liu J, et al
    . Gray and white matter alterations in early HIV-infected patients: combined voxel-based morphometry and tract-based spatial statistics. J Magn Reson Imaging 2016;43:1474–83 doi:10.1002/jmri.25100 pmid:26714822
    CrossRefPubMed
  59. 59.↵
    1. Tang VM,
    2. Lang DJ,
    3. Giesbrecht CJ, et al
    . White matter deficits assessed by diffusion tensor imaging and cognitive dysfunction in psychostimulant users with comorbid human immunodeficiency virus infection. BMC Res Notes 2015;8:515 doi:10.1186/s13104-015-1501-5 pmid:26423806
    CrossRefPubMed
  60. 60.↵
    1. McNutt M
    . Journals unite for reproducibility. Science 2014;346:679 doi:10.1126/science.aaa1724 pmid:25383411
    Abstract/FREE Full Text
  61. 61.↵
    1. Collins FS,
    2. Tabak LA
    . Policy: NIH plans to enhance reproducibility. Nature 2014;505:612–13 doi:10.1038/505612a pmid:24482835
    CrossRefPubMedWeb of Science
  62. 62.↵
    1. Papinutto ND,
    2. Maule F,
    3. Jovicich J
    . Reproducibility and biases in high field brain diffusion MRI: an evaluation of acquisition and analysis variables. Magn Reson Imaging 2013;31:827–39 doi:10.1016/j.mri.2013.03.004 pmid:23623031
    CrossRefPubMed
  63. 63.↵
    1. Jones DK,
    2. Knösche TR,
    3. Turner R
    . White matter integrity, fiber count, and other fallacies: the do's and don'ts of diffusion MRI. Neuroimage. 2013;73:239–54 doi:10.1016/j.neuroimage.2012.06.081 pmid:22846632
    CrossRefPubMedWeb of Science
  64. 64.↵
    1. Vollmar C,
    2. O'Muircheartaigh J,
    3. Barker GJ, et al
    . Identical, but not the same: intra-site and inter-site reproducibility of fractional anisotropy measures on two 3.0T scanners. Neuroimage 2010;51:1384–94 doi:10.1016/j.neuroimage.2010.03.046 pmid:20338248
    CrossRefPubMedWeb of Science
  65. 65.↵
    1. Pfefferbaum A,
    2. Sullivan EV
    . Microstructural but not macrostructural disruption of white matter in women with chronic alcoholism. Neuroimage 2002;15:708–18 doi:10.1006/nimg.2001.1018 pmid:11848714
    CrossRefPubMedWeb of Science
  66. 66.↵
    1. Pfefferbaum A,
    2. Sullivan EV,
    3. Hedehus M, et al
    . In vivo detection and functional correlates of white matter microstructural disruption in chronic alcoholism. Alcohol Clin Exp Res 2000;24:1214–21 doi:10.1111/j.1530-0277.2000.tb02086.x pmid:10968660
    CrossRefPubMedWeb of Science
  67. 67.↵
    1. Ma L,
    2. Hasan KM,
    3. Steinberg JL, et al
    . Diffusion tensor imaging in cocaine dependence: regional effects of cocaine on corpus callosum and effect of cocaine administration route. Drug Alcohol Depend 2009;104:262–67 doi:10.1016/j.drugalcdep.2009.05.020 pmid:19595517
    CrossRefPubMed
  68. 68.↵
    1. Tobias MC,
    2. O'Neill J,
    3. Hudkins M, et al
    . White-matter abnormalities in brain during early abstinence from methamphetamine abuse. Psychopharmacology 2010;209:13–24 doi:10.1007/s00213-009-1761-7 pmid:20101394
    CrossRefPubMed
  69. 69.↵
    1. Bora E,
    2. Yücel M,
    3. Fornito A, et al
    . White matter microstructure in opiate addiction. Addict Boil 2012;17:141–48 doi:10.1111/j.1369-1600.2010.00266.x
    CrossRefPubMed
  70. 70.↵
    1. Pagani E,
    2. Agosta F,
    3. Rocca MA, et al
    . Voxel-based analysis derived from fractional anisotropy images of white matter volume changes with aging. Neuroimage 2008;41:657–67 doi:10.1016/j.neuroimage.2008.03.021 pmid:18442927
    CrossRefPubMed
  71. 71.↵
    1. Nusbaum AO,
    2. Tang CY,
    3. Buchsbaum MS, et al
    . Regional and global changes in cerebral diffusion with normal aging. AJNR Am J Neuroradiol 2001;22:136–42 pmid:11158899
    Abstract/FREE Full Text
  72. 72.↵
    1. Haász J,
    2. Westlye ET,
    3. Fjær S, et al
    . General fluid-type intelligence is related to indices of white matter structure in middle-aged and old adults. Neuroimage 2013;83:372–83 doi:10.1016/j.neuroimage.2013.06.040 pmid:23791837
    CrossRefPubMed
  73. 73.↵
    1. Malpas CB,
    2. Genc S,
    3. Saling MM, et al
    . MRI correlates of general intelligence in neurotypical adults. J Clin Neurosci 2016;24:128–34 doi:10.1016/j.jocn.2015.07.012 pmid:26455546
    CrossRefPubMed
  74. 74.↵
    1. Ances BM,
    2. Roc AC,
    3. Korczykowski M, et al
    . Combination antiretroviral therapy modulates the blood oxygen level–dependent amplitude in human immunodeficiency virus–seropositive patients. J Neurovirol 2008;14:418–24 doi:10.1080/13550280802298112 pmid:19040188
    CrossRefPubMed
  75. 75.↵
    1. Alter MJ
    . Epidemiology of viral hepatitis and HIV co-infection. J Hepatol 2006;44(1 suppl):S6–9 pmid:16352363
    CrossRefPubMedWeb of Science
  76. 76.↵
    1. Bladowska J,
    2. Zimny A,
    3. Knysz B, et al
    . Evaluation of early cerebral metabolic, perfusion and microstructural changes in HCV-positive patients: a pilot study. J Hepatol 2013;59:651–57 doi:10.1016/j.jhep.2013.05.008 pmid:23680314
    CrossRefPubMedWeb of Science
  77. 77.↵
    1. Heaps-Woodruff JM,
    2. Wright PW,
    3. Ances BM, et al
    . The impact of human immune deficiency virus and hepatitis C coinfection on white matter microstructural integrity. J Neurovirol 2016;22:389–99 doi:10.1007/s13365-015-0409-0 pmid:26689572
    CrossRefPubMed
  78. 78.↵
    1. Berlin JA,
    2. Santanna J,
    3. Schmid CH, et al
    ; Anti-Lymphocyte Antibody Induction Therapy Study Group. Individual patient- versus group-level data meta-regressions for the investigation of treatment effect modifiers: ecological bias rears its ugly head. Stat Med 2002;21:371–87 doi:10.1002/sim.1023 pmid:11813224
    CrossRefPubMedWeb of Science
  79. 79.↵
    1. Alexander AL,
    2. Lee JE,
    3. Lazar M, et al
    . Diffusion tensor imaging of the brain. Neurotherapeutics 2007;4:316–29 doi:10.1016/j.nurt.2007.05.011 pmid:17599699
    CrossRefPubMedWeb of Science
  80. 80.↵
    1. Hong S,
    2. Banks WA
    . Role of the immune system in HIV-associated neuroinflammation and neurocognitive implications. Brain Behav Immun 2015;45:1–12 doi:10.1016/j.bbi.2014.10.008 pmid:25449672
    CrossRefPubMed
  81. 81.↵
    1. Anthony IC,
    2. Ramage SN,
    3. Carnie FW, et al
    . Influence of HAART on HIV-related CNS disease and neuroinflammation. J Neuropathol Exp Neurol 2005;64:529–36 doi:10.1093/jnen/64.6.529 pmid:15977645
    CrossRefPubMed
  82. 82.↵
    1. Moher D,
    2. Liberati A,
    3. Tetzlaff J, et al
    . Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009;6:e1000097 doi:10.1371/journal.pmed.1000097 pmid:19621072
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 38 (8)
American Journal of Neuroradiology
Vol. 38, Issue 8
1 Aug 2017
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Reliability of White Matter Microstructural Changes in HIV Infection: Meta-Analysis and Confirmation
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
E.E. O'Connor, A. Jaillard, F. Renard, T.A. Zeffiro
Reliability of White Matter Microstructural Changes in HIV Infection: Meta-Analysis and Confirmation
American Journal of Neuroradiology Aug 2017, 38 (8) 1510-1519; DOI: 10.3174/ajnr.A5229

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Reliability of White Matter Microstructural Changes in HIV Infection: Meta-Analysis and Confirmation
E.E. O'Connor, A. Jaillard, F. Renard, T.A. Zeffiro
American Journal of Neuroradiology Aug 2017, 38 (8) 1510-1519; DOI: 10.3174/ajnr.A5229
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Acknowledgments
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • Brain Structural Changes following HIV Infection: Meta-Analysis
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • Clinical Outcomes After Chiari I Decompression
  • Segmentation of Brain Metastases with BLAST
Show more Adult Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire