Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • Advancing NeuroMRI with High-Relaxivity Contrast Agents
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • Advancing NeuroMRI with High-Relaxivity Contrast Agents
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates


Improved Turnaround Times | Median time to first decision: 12 days

Research ArticleAdult Brain
Open Access

Volumetric Analysis from a Harmonized Multisite Brain MRI Study of a Single Subject with Multiple Sclerosis

R.T. Shinohara, J. Oh, G. Nair, P.A. Calabresi, C. Davatzikos, J. Doshi, R.G. Henry, G. Kim, K.A. Linn, N. Papinutto, D. Pelletier, D.L. Pham, D.S. Reich, W. Rooney, S. Roy, W. Stern, S. Tummala, F. Yousuf, A. Zhu, N.L. Sicotte, R. Bakshi and the NAIMS Cooperative
American Journal of Neuroradiology August 2017, 38 (8) 1501-1509; DOI: https://doi.org/10.3174/ajnr.A5254
R.T. Shinohara
aFrom the Departments of Biostatistics and Epidemiology (R.T.S., K.A.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for R.T. Shinohara
J. Oh
cDepartment of Neurology (J.O., P.A.C., D.S.R.), Johns Hopkins University School of Medicine, Baltimore, Maryland
dSt. Michael's Hospital (J.O.), University of Toronto, Toronto, Ontario, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J. Oh
G. Nair
eTranslational Neuroradiology Section (G.N., D.S.R.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for G. Nair
P.A. Calabresi
cDepartment of Neurology (J.O., P.A.C., D.S.R.), Johns Hopkins University School of Medicine, Baltimore, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for P.A. Calabresi
C. Davatzikos
bRadiology (C.D., J.D.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C. Davatzikos
J. Doshi
bRadiology (C.D., J.D.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J. Doshi
R.G. Henry
fDepartment of Neurology (R.G.H., N.P., W.S., A.Z.), University of California, San Francisco, San Francisco, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for R.G. Henry
G. Kim
gLaboratory for Neuroimaging Research (G.K., S.T., F.Y., R.B.), Partners Multiple Sclerosis Center
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for G. Kim
K.A. Linn
aFrom the Departments of Biostatistics and Epidemiology (R.T.S., K.A.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for K.A. Linn
N. Papinutto
fDepartment of Neurology (R.G.H., N.P., W.S., A.Z.), University of California, San Francisco, San Francisco, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for N. Papinutto
D. Pelletier
iDepartment of Neurology (D.P.), Yale Medical School, New Haven, Connecticut
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for D. Pelletier
D.L. Pham
jHenry M. Jackson Foundation for the Advancement of Military Medicine (D.L.P., S.R.), Bethesda, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for D.L. Pham
D.S. Reich
cDepartment of Neurology (J.O., P.A.C., D.S.R.), Johns Hopkins University School of Medicine, Baltimore, Maryland
eTranslational Neuroradiology Section (G.N., D.S.R.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for D.S. Reich
W. Rooney
kAdvanced Imaging Research Center, Oregon Health & Science University (W.R.), Portland, Oregon
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for W. Rooney
S. Roy
jHenry M. Jackson Foundation for the Advancement of Military Medicine (D.L.P., S.R.), Bethesda, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S. Roy
W. Stern
fDepartment of Neurology (R.G.H., N.P., W.S., A.Z.), University of California, San Francisco, San Francisco, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for W. Stern
S. Tummala
gLaboratory for Neuroimaging Research (G.K., S.T., F.Y., R.B.), Partners Multiple Sclerosis Center
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S. Tummala
F. Yousuf
gLaboratory for Neuroimaging Research (G.K., S.T., F.Y., R.B.), Partners Multiple Sclerosis Center
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for F. Yousuf
A. Zhu
fDepartment of Neurology (R.G.H., N.P., W.S., A.Z.), University of California, San Francisco, San Francisco, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Zhu
N.L. Sicotte
lDepartment of Neurology (N.L.S.), Cedars-Sinai Medical Center, Los Angeles, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for N.L. Sicotte
R. Bakshi
gLaboratory for Neuroimaging Research (G.K., S.T., F.Y., R.B.), Partners Multiple Sclerosis Center
hDepartments of Neurology and Radiology (R.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for R. Bakshi
ma complete list of the NAIMS participants is provided in the “Acknowledgments.”
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

REFERENCES

  1. 1.↵
    1. García-Lorenzo D,
    2. Francis S,
    3. Narayanan S, et al
    . Review of automatic segmentation methods of multiple sclerosis white matter lesions on conventional magnetic resonance imaging. Med Image Anal 2013;17:1–18 doi:10.1016/j.media.2012.09.004 pmid:23084503
    CrossRefPubMed
  2. 2.↵
    1. Lublin FD,
    2. Reingold SC,
    3. Cohen JA, et al
    . Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology 2014;83:278–86 doi:10.1212/WNL.0000000000000560 pmid:24871874
    CrossRefPubMed
  3. 3.↵
    1. Simon JH,
    2. Jacobs LD,
    3. Campion M, et al
    . Magnetic resonance studies of intramuscular interferon beta-1a for relapsing multiple sclerosis: the Multiple Sclerosis Collaborative Research Group. Ann Neurol 1998;43:79–87 doi:10.1002/ana.410430114 pmid:9450771
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Bagnato F,
    2. Jeffries N,
    3. Richert ND, et al
    . Evolution of T1 black holes in patients with multiple sclerosis imaged monthly for 4 years. Brain 2003;126(pt 8):1782–89 doi:10.1093/brain/awg182 pmid:12821527
    CrossRefPubMedWeb of Science
  5. 5.↵
    1. Sahraian MA,
    2. Radue EW,
    3. Haller S, et al
    . Black holes in multiple sclerosis: definition, evolution, and clinical correlations. Acta Neurol Scand 2010;122:1–8 doi:10.1111/j.1600-0404.2009.01221.x pmid:20003089
    CrossRefPubMedWeb of Science
  6. 6.↵
    1. Giorgio A,
    2. Stromillo ML,
    3. Bartolozzi ML, et al
    . Relevance of hypointense brain MRI lesions for long-term worsening of clinical disability in relapsing multiple sclerosis. Mult Scler 2014;20:214–19 doi:10.1177/1352458513494490 pmid:23877971
    CrossRefPubMed
  7. 7.↵
    1. van Walderveen MA,
    2. Kamphorst W,
    3. Scheltens P, et al
    . Histopathologic correlate of hypointense lesions on T1-weighted spin-echo MRI in multiple sclerosis. Neurology 1998;50:1282–88 pmid:9595975
    Abstract/FREE Full Text
  8. 8.↵
    1. Truyen L,
    2. van Waesberghe JH,
    3. van Walderveen MA, et al
    . Accumulation of hypointense lesions (“black holes”) on T1 spin-echo MRI correlates with disease progression in multiple sclerosis. Neurology 1996;47:1469–76 pmid:8960729
    Abstract/FREE Full Text
  9. 9.↵
    1. Evangelou N,
    2. Esiri MM,
    3. Smith S, et al
    . Quantitative pathological evidence for axonal loss in normal appearing white matter in multiple sclerosis. Ann Neurol 2000;47:391–95 pmid:10716264
    CrossRefPubMedWeb of Science
  10. 10.↵
    1. Evangelou N,
    2. Konz D,
    3. Esiri MM, et al
    . Regional axonal loss in the corpus callosum correlates with cerebral white matter lesion volume and distribution in multiple sclerosis. Brain 2000;123(pt 9):1845–49 pmid:10960048
    CrossRefPubMedWeb of Science
  11. 11.↵
    1. Sastre-Garriga J,
    2. Ingle GT,
    3. Chard DT, et al
    . Grey and white matter volume changes in early primary progressive multiple sclerosis: a longitudinal study. Brain 2005;128(pt 6):1454–60 doi:10.1093/brain/awh498 pmid:15817511
    CrossRefPubMedWeb of Science
  12. 12.↵
    1. Sanfilipo MP,
    2. Benedict RH,
    3. Weinstock-Guttman B, et al
    . Gray and white matter brain atrophy and neuropsychological impairment in multiple sclerosis. Neurology 2006;66:685–92 doi:10.1212/01.wnl.0000201238.93586.d9 pmid:16534104
    Abstract/FREE Full Text
  13. 13.↵
    1. Ge Y,
    2. Grossman RI,
    3. Udupa JK, et al
    . Brain atrophy in relapsing-remitting multiple sclerosis: fractional volumetric analysis of gray matter and white matter. Radiology 2001;220:606–10 doi:10.1148/radiol.2203001776 pmid:11526256
    CrossRefPubMedWeb of Science
  14. 14.↵
    1. Fisher E,
    2. Lee JC,
    3. Nakamura K, et al
    . Gray matter atrophy in multiple sclerosis: a longitudinal study. Ann Neurol 2008;64:255–65 doi:10.1002/ana.21436 pmid:18661561
    CrossRefPubMedWeb of Science
  15. 15.↵
    1. Fisniku LK,
    2. Chard DT,
    3. Jackson JS, et al
    . Gray matter atrophy is related to long-term disability in multiple sclerosis. Ann Neurol 2008;64:247–54 doi:10.1002/ana.21423 pmid:18570297
    CrossRefPubMedWeb of Science
  16. 16.↵
    1. De Stefano N,
    2. Matthews PM,
    3. Filippi M, et al
    . Evidence of early cortical atrophy in MS: relevance to white matter changes and disability. Neurology 2003;60:1157–62 pmid:12682324
    Abstract/FREE Full Text
  17. 17.↵
    1. Losseff NA,
    2. Wang L,
    3. Lai HM, et al
    . Progressive cerebral atrophy in multiple sclerosis: a serial MRI study. Brain 1996;119(pt 6):2009–19 pmid:9010005
    CrossRefPubMedWeb of Science
  18. 18.↵
    1. Keshavan A,
    2. Paul F,
    3. Beyer MK, et al
    . Power estimation for non-standardized multisite studies. Neuroimage 2016;134:281–94 doi:10.1016/j.neuroimage.2016.03.051 pmid:27039700
    CrossRefPubMed
  19. 19.↵
    1. Bakshi R,
    2. Thompson AJ,
    3. Rocca MA, et al
    . MRI in multiple sclerosis: current status and future prospects. Lancet Neurol 2008;7:615–25 doi:10.1016/S1474-4422(08)70137-6 pmid:18565455
    CrossRefPubMedWeb of Science
  20. 20.↵
    1. Agartz I,
    2. Okuguwa G,
    3. Nordström M, et al
    . Reliability and reproducibility of brain tissue volumetry from segmented MR scans. Eur Arch Psychiatry Clin Neurosci 2001;251:255–61 doi:10.1007/PL00007542 pmid:11881838
    CrossRefPubMed
  21. 21.↵
    1. Bartzokis G,
    2. Mintz J,
    3. Marx P, et al
    . Reliability of in vivo volume measures of hippocampus and other brain structures using MRI. Magn Reson Imaging 1993;11:993–1006 doi:10.1016/0730-725X(93)90218-3 pmid:8231683
    CrossRefPubMedWeb of Science
  22. 22.↵
    1. Maclaren J,
    2. Han Z,
    3. Vos SB, et al
    . Reliability of brain volume measurements: a test-retest dataset. Sci Data 2014;1:140037 doi:10.1038/sdata.2014.37 pmid:25977792
    CrossRefPubMed
  23. 23.↵
    1. Morey RA,
    2. Selgrade ES,
    3. Wagner HR 2nd., et al
    . Scan-rescan reliability of subcortical brain volumes derived from automated segmentation. Hum Brain Mapp 2010;31:1751–62 doi:10.1002/hbm.2097 pmid:20162602
    CrossRefPubMedWeb of Science
  24. 24.↵
    1. Schnack HG,
    2. van Haren NE,
    3. Hulshoff Pol HE, et al
    . Reliability of brain volumes from multicenter MRI acquisition: a calibration study. Hum Brain Mapp 2004;22:312–20 doi:10.1002/hbm.20040 pmid:15202109
    CrossRefPubMedWeb of Science
  25. 25.↵
    1. Jovicich J,
    2. Marizzoni M,
    3. Sala-Llonch R, et al
    ; PharmaCog Consortium. Brain morphometry reproducibility in multi-center 3T MRI studies: a comparison of cross-sectional and longitudinal segmentations. Neuroimage 2013;83:472–84 doi:10.1016/j.neuroimage.2013.05.007 pmid:23668971
    CrossRefPubMed
  26. 26.↵
    1. Schnack HG,
    2. van Haren NE,
    3. Brouwer RM, et al
    . Mapping reliability in multicenter MRI: voxel-based morphometry and cortical thickness. Hum Brain Mapp 2010;31:1967–82 doi:10.1002/hbm.20991 pmid:21086550
    CrossRefPubMedWeb of Science
  27. 27.↵
    1. Cannon TD,
    2. Sun F,
    3. McEwen SJ, et al
    . Reliability of neuroanatomical measurements in a multisite longitudinal study of youth at risk for psychosis. Hum Brain Mapp 2014;35:2424–34 doi:10.1002/hbm.22338 pmid:23982962
    CrossRefPubMed
  28. 28.↵
    1. Eloyan A,
    2. Shou H,
    3. Shinohara R, et al
    . Health effects of lesion localization in multiple sclerosis: spatial registration and confounding adjustment. PLoS One 2014;9:e107263 doi:10.1371/journal.pone.0107263 pmid:25233361
    CrossRefPubMed
  29. 29.↵
    1. Shiee N,
    2. Bazin PL,
    3. Ozturk A, et al
    . A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions. Neuroimage 2010;49:1524–35 doi:10.1016/j.neuroimage.2009.09.005 pmid:19766196
    CrossRefPubMed
  30. 30.↵
    1. Sweeney EM,
    2. Shinohara RT,
    3. Shiee N, et al
    . OASIS is Automated Statistical Inference for Segmentation, with applications to multiple sclerosis lesion segmentation in MRI. Neuroimage Clin 2013;2:402–13 doi:10.1016/j.nicl.2013.03.002 pmid:24179794
    CrossRefPubMed
  31. 31.↵
    1. Roy S,
    2. He Q,
    3. Sweeney E, et al
    . Subject-Specific Sparse Dictionary Learning for atlas-based brain MRI segmentation. IEEE J Biomed Health Inform 2015;19:1598–609 doi:10.1109/JBHI.2015.2439242 pmid:26340685
    CrossRefPubMed
  32. 32.↵
    1. Lao Z,
    2. Shen D,
    3. Liu D, et al
    . Computer-assisted segmentation of white matter lesions in 3D MR images using support vector machine. Acad Radiol 2008;15:300–13 doi:10.1016/j.acra.2007.10.012 pmid:18280928
    CrossRefPubMedWeb of Science
  33. 33.↵
    1. Patenaude B,
    2. Smith SM,
    3. Kennedy DN, et al
    . A Bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage 2011;56:907–22 doi:10.1016/j.neuroimage.2011.02.046 pmid:21352927
    CrossRefPubMedWeb of Science
  34. 34.↵
    1. Huo Y,
    2. Carass A,
    3. Resnick SM, et al
    . Combining multi-atlas segmentation with brain surface estimation. Proc SPIE Int Soc Opt Eng 2016;9784. pii: 97840E doi:10.1117/12.2216604 pmid:27127332
    CrossRefPubMed
  35. 35.↵
    1. Doshi J,
    2. Erus G,
    3. Ou Y, et al
    ; Alzheimer's Neuroimaging Initiative. MUSE: MUlti-atlas region Segmentation utilizing Ensembles of registration algorithms and parameters, and locally optimal atlas selection. Neuroimage 2016;127:186–95 doi:10.1016/j.neuroimage.2015.11.073 pmid:26679328
    CrossRefPubMed
  36. 36.↵
    R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2016
  37. 37.↵
    1. Sicotte NL,
    2. Voskuhl RR,
    3. Bouvier S, et al
    . Comparison of multiple sclerosis lesions at 1.5 and 3.0 Tesla. Invest Radiol 2003;38:423–27 doi:10.1097/01.RLI.0000065426.07178.f1 pmid:12821856
    CrossRefPubMedWeb of Science
  38. 38.↵
    1. Stankiewicz JM,
    2. Glanz BI,
    3. Healy BC, et al
    . Brain MRI lesion load at 1.5T and 3T versus clinical status in multiple sclerosis. J Neuroimaging 2011;21:e50–56 doi:10.1111/j.1552-6569.2009.00449.x pmid:19888926
    CrossRefPubMedWeb of Science
  39. 39.↵
    1. Chu R,
    2. Tauhid S,
    3. Glanz BI, et al
    . Whole-brain volume measured from 1.5T versus 3T MRI in healthy subjects and patients with multiple sclerosis. J Neuroimaging 2016;26:62–67 doi:10.1111/jon.12271 pmid:26118637
    CrossRefPubMed
  40. 40.↵
    1. Chu R,
    2. Hurwitz S,
    3. Tauhid S, et al
    . Deep gray matter segmentation from 1.5T vs. 3T MRI in normal controls and patients with multiple sclerosis. Neurology 2016;86(16 suppl):P4.171
  41. 41.↵
    1. Gunter JL,
    2. Bernstein MA,
    3. Borowski BJ, et al
    . Measurement of MRI scanner performance with the ADNI phantom. Med Phys 2009;36:2193–205 doi:10.1118/1.3116776 pmid:19610308
    CrossRefPubMed
  42. 42.↵
    1. Duning T,
    2. Kloska S,
    3. Steinsträter O, et al
    . Dehydration confounds the assessment of brain atrophy. Neurology 2005;64:548–50 doi:10.1212/01.WNL.0000150542.16969.CC pmid:15699394
    Abstract/FREE Full Text
  43. 43.↵
    1. Sampat MP,
    2. Healy BC,
    3. Meier DS, et al
    . Disease modeling in multiple sclerosis: assessment and quantification of sources of variability in brain parenchymal fraction measurements. Neuroimage 2010;52:1367–73 doi:10.1016/j.neuroimage.2010.03.075 pmid:20362675
    CrossRefPubMed
  44. 44.↵
    1. Nakamura K,
    2. Brown RA,
    3. Araujo D, et al
    . Correlation between brain volume change and T2 relaxation time induced by dehydration and rehydration: implications for monitoring atrophy in clinical studies. Neuroimage Clin 2014;6:166–70 doi:10.1016/j.nicl.2014.08.014 pmid:25379428
    CrossRefPubMed
  45. 45.↵
    1. Nakamura K,
    2. Brown RA,
    3. Narayanan S, et al
    ; Alzheimer's Disease Neuroimaging Initiative. Diurnal fluctuations in brain volume: statistical analyses of MRI from large populations. Neuroimage 2015;118:126–32 doi:10.1016/j.neuroimage.2015.05.077 pmid:26049148
    CrossRefPubMed
  46. 46.↵
    1. Jovicich J,
    2. Czanner S,
    3. Han X, et al
    . MRI-derived measurements of human subcortical, ventricular and intracranial brain volumes: reliability effects of scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner vendors and field strengths. Neuroimage 2009;46:177–92 doi:10.1016/j.neuroimage.2009.02.010 pmid:19233293
    CrossRefPubMedWeb of Science
  47. 47.↵
    1. Kruggel F,
    2. Turner J,
    3. Muftuler LT
    ; Alzheimer's Disease Neuroimaging Initiative. Impact of scanner hardware and imaging protocol on image quality and compartment volume precision in the ADNI cohort. Neuroimage 2010;49:2123–33 doi:10.1016/j.neuroimage.2009.11.006 pmid:19913626
    CrossRefPubMedWeb of Science
  48. 48.↵
    1. Filippi M,
    2. Wolinsky JS,
    3. Comi G
    . Effects of oral glatiramer acetate on clinical and MRI-monitored disease activity in patients with relapsing multiple sclerosis: a multicentre, double-blind, randomised, placebo-controlled study. Lancet Neurol 2006;5:213–20 doi:10.1016/S1474-4422(06)70327-1 pmid:16488376
    CrossRefPubMedWeb of Science
  49. 49.↵
    1. Shinohara RT,
    2. Sweeney EM,
    3. Goldsmith J, et al
    . Statistical normalization techniques for magnetic resonance imaging. Neuroimage Clin 2014;6:9–19 doi:10.1016/j.nicl.2014.08.008 pmid:25379412
    CrossRefPubMed
  50. 50.↵
    1. Nyúl LG,
    2. Udupa JJ,
    3. Zhang X
    . New variants of a method of MRI scale standardization. Med Imaging IEEE Trans 2000;19:143–50 pmid:10784285
    CrossRefPubMedWeb of Science
  51. 51.↵
    1. Ghassemi R,
    2. Brown R,
    3. Narayanan S, et al
    . Normalization of white matter intensity on T1-weighted images of patients with acquired central nervous system demyelination. J Neuroimaging 2015;25:184–90 doi:10.1111/jon.12129 pmid:24942347
    CrossRefPubMed
  52. 52.↵
    1. Fortin JP,
    2. Sweeney EM,
    3. Muschelli J, et al
    ; Alzheimer's Disease Neuroimaging Initiative. Removing inter-subject technical variability in magnetic resonance imaging studies. Neuroimage 2016;132:198–212 doi:10.1016/j.neuroimage.2016.02.036 pmid:26923370
    CrossRefPubMed
  53. 53.↵
    1. Madabhushi A,
    2. Udupa JK
    . New methods of MR image intensity standardization via generalized scale. Med Phys 2006;33:3426–34 doi:10.1118/1.2335487 pmid:17022239
    CrossRefPubMed
  54. 54.↵
    1. Nyúl LG,
    2. Udupa JK
    . On standardizing the MR image intensity scale. Magn Reson Med 1999;42:1072–81 pmid:10571928
    CrossRefPubMed
  55. 55.↵
    1. Chua AS,
    2. Egorova S,
    3. Anderson MC, et al
    . Handling changes in MRI acquisition parameters in modeling whole brain lesion volume and atrophy data in multiple sclerosis subjects: comparison of linear mixed-effect models. Neuroimage Clin 2015;8:606–10 doi:10.1016/j.nicl.2015.06.009 pmid:26199872
    CrossRefPubMed
  56. 56.↵
    1. Leek JT,
    2. Scharpf RB,
    3. Bravo HC, et al
    . Tackling the widespread and critical impact of batch effects in high-throughput data. Nat Rev Genet 2010;11:733–39 doi:10.1038/nrg2825 pmid:20838408
    CrossRefPubMedWeb of Science
  57. 57.↵
    1. Fennema-Notestine C,
    2. Gamst AC,
    3. Quinn BT, et al
    . Feasibility of multi-site clinical structural neuroimaging studies of aging using legacy data. Neuroinformatics 2007;5:235–45 doi:10.1007/s12021-007-9003-9 pmid:17999200
    CrossRefPubMedWeb of Science
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 38 (8)
American Journal of Neuroradiology
Vol. 38, Issue 8
1 Aug 2017
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Volumetric Analysis from a Harmonized Multisite Brain MRI Study of a Single Subject with Multiple Sclerosis
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
R.T. Shinohara, J. Oh, G. Nair, P.A. Calabresi, C. Davatzikos, J. Doshi, R.G. Henry, G. Kim, K.A. Linn, N. Papinutto, D. Pelletier, D.L. Pham, D.S. Reich, W. Rooney, S. Roy, W. Stern, S. Tummala, F. Yousuf, A. Zhu, N.L. Sicotte, R. Bakshi, the NAIMS Cooperative
Volumetric Analysis from a Harmonized Multisite Brain MRI Study of a Single Subject with Multiple Sclerosis
American Journal of Neuroradiology Aug 2017, 38 (8) 1501-1509; DOI: 10.3174/ajnr.A5254

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Volumetric Analysis from a Harmonized Multisite Brain MRI Study of a Single Subject with Multiple Sclerosis
R.T. Shinohara, J. Oh, G. Nair, P.A. Calabresi, C. Davatzikos, J. Doshi, R.G. Henry, G. Kim, K.A. Linn, N. Papinutto, D. Pelletier, D.L. Pham, D.S. Reich, W. Rooney, S. Roy, W. Stern, S. Tummala, F. Yousuf, A. Zhu, N.L. Sicotte, R. Bakshi, the NAIMS Cooperative
American Journal of Neuroradiology Aug 2017, 38 (8) 1501-1509; DOI: 10.3174/ajnr.A5254
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Acknowledgments
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • A preliminary attempt to harmonize using physics-constrained deep neural networks for multisite and multiscanner MRI datasets (PhyCHarm)
  • Within-person changes in objectively measured activity levels as a predictor of brain atrophy in multiple sclerosis
  • Brain Charts for People Living with Multiple Sclerosis
  • MISPEL: A supervised deep learning harmonization method for multi-scanner neuroimaging data
  • Multiscale functional connectivity patterns of the aging brain learned from rsfMRI data of 4,259 individuals of the multi-cohort iSTAGING study
  • Inter-scanner brain MRI volumetric biases persist even in a harmonized multi-subject study of multiple sclerosis
  • Privacy-preserving harmonization via distributed ComBat
  • Automatic quantification of brain lesion volume from post-trauma MR Images
  • On stability of Canonical Correlation Analysis and Partial Least Squares with application to brain-behavior associations
  • Integrating large-scale neuroimaging research datasets: harmonisation of white matter hyperintensity measurements across Whitehall and UK Biobank datasets
  • Longitudinal ComBat: A Method for Harmonizing Longitudinal Multi-scanner Imaging Data
  • Voxel-Based Morphometry--from Hype to Hope. A Study on Hippocampal Atrophy in Mesial Temporal Lobe Epilepsy
  • Harmonization of large multi-site imaging datasets: Application to 10,232 MRIs for the analysis of imaging patterns of structural brain change throughout the lifespan
  • The Canadian Biomarker Integration Network in Depression (CAN-BIND): magnetic resonance imaging protocols
  • Intensity warping for multisite MRI harmonization
  • BOLD signal variability and complexity in children and adolescents with and without autism spectrum disorder
  • An automated statistical technique for counting distinct multiple sclerosis lesions can recover aspects of lesion history and provide relevant disease information
  • Imaging outcome measures of neuroprotection and repair in MS: A consensus statement from NAIMS
  • An Automated Statistical Technique for Counting Distinct Multiple Sclerosis Lesions
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • Clinical Outcomes After Chiari I Decompression
  • Segmentation of Brain Metastases with BLAST
Show more Adult Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire