Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates


Improved Turnaround Times | Median time to first decision: 12 days

Research ArticleFunctional

Reduction of Motion Artifacts and Noise Using Independent Component Analysis in Task-Based Functional MRI for Preoperative Planning in Patients with Brain Tumor

E.H. Middlebrooks, C.J. Frost, I.S. Tuna, I.M. Schmalfuss, M. Rahman and A. Old Crow
American Journal of Neuroradiology February 2017, 38 (2) 336-342; DOI: https://doi.org/10.3174/ajnr.A4996
E.H. Middlebrooks
aFrom the Department of Radiology (E.H.M.), University of Alabama at Birmingham, Birmingham, Alabama
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for E.H. Middlebrooks
C.J. Frost
bDepartment of Biology (C.J.F.), University of Louisville, Louisville, Kentucky
cMedical Imaging Consultants (C.J.F.), Gainesville, Florida
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C.J. Frost
I.S. Tuna
dDepartments of Radiology (I.S.T., I.M.S., A.O.C.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for I.S. Tuna
I.M. Schmalfuss
dDepartments of Radiology (I.S.T., I.M.S., A.O.C.)
fNorth Florida/South Georgia Veterans Administration (I.M.S.), Gainesville, Florida.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for I.M. Schmalfuss
M. Rahman
eNeurosurgery (M.R.), College of Medicine, University of Florida, Gainesville, Florida
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Rahman
A. Old Crow
dDepartments of Radiology (I.S.T., I.M.S., A.O.C.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Old Crow
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Pillai JJ
    . The evolution of clinical functional imaging during the past 2 decades and its current impact on neurosurgical planning. AJNR Am J Neuroradiol 2010;31:219–25 doi:10.3174/ajnr.A1845 pmid:20150316
    Abstract/FREE Full Text
  2. 2.↵
    1. Krings T,
    2. Reinges MH,
    3. Erberich S, et al
    . Functional MRI for presurgical planning: problems, artefacts, and solution strategies. J Neurol Neurosurg Psychiatry 2001;70:749–60 doi:10.1136/jnnp.70.6.749 pmid:11385009
    Abstract/FREE Full Text
  3. 3.↵
    1. Ogawa S,
    2. Lee TM,
    3. Kay AR, et al
    . Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 1990;87:9868–72 doi:10.1073/pnas.87.24.9868 pmid:2124706
    Abstract/FREE Full Text
  4. 4.↵
    1. Ogawa S,
    2. Menon RS,
    3. Tank DW, et al
    . Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging: a comparison of signal characteristics with a biophysical model. Biophys J 1993;64:803–12 doi:10.1016/S0006-3495(93)81441-3 pmid:8386018
    CrossRefPubMedWeb of Science
  5. 5.↵
    1. Xu Y,
    2. Tong Y,
    3. Liu S, et al
    . Denoising the speaking brain: toward a robust technique for correcting artifact-contaminated fMRI data under severe motion. Neuroimage 2014;103:33–47 doi:10.1016/j.neuroimage.2014.09.013 pmid:25225001
    CrossRefPubMed
  6. 6.↵
    1. Johnstone T,
    2. Ores Walsh KS,
    3. Greischar LL, et al
    . Motion correction and the use of motion covariates in multiple-subject fMRI analysis. Hum Brain Mapp 2006;27:779–88 doi:10.1002/hbm.20219 pmid:16456818
    CrossRefPubMedWeb of Science
  7. 7.↵
    1. Biswal B,
    2. DeYoe EA,
    3. Hyde JS
    . Reduction of physiological fluctuations in fMRI using digital filters. Magn Reson Med 1996;35:107–13 doi:10.1002/mrm.1910350114 pmid:8771028
    CrossRefPubMedWeb of Science
  8. 8.↵
    1. Field AS,
    2. Yen YF,
    3. Burdette JH, et al
    . False cerebral activation on BOLD functional MR images: study of low-amplitude motion weakly correlated to stimulus. AJNR Am J Neuroradiol 2000;21:1388–96 pmid:11003269
    Abstract/FREE Full Text
  9. 9.↵
    1. Krüger G,
    2. Glover GH
    . Physiological noise in oxygenation-sensitive magnetic resonance imaging. Magn Reson Med 2001;46:631–37 doi:10.1002/mrm.1240.abs pmid:11590638
    CrossRefPubMedWeb of Science
  10. 10.↵
    1. Wilke M
    . Isolated assessment of translation or rotation severely underestimates the effects of subject motion in fMRI data. PLoS One 2014;9:e106498 doi:10.1371/journal.pone.0106498 pmid:25333359
    CrossRefPubMed
  11. 11.↵
    1. Friston KJ,
    2. Williams S,
    3. Howard R, et al
    . Movement-related effects in fMRI time-series. Magn Reson Med 1996;35:346–55 doi:10.1002/mrm.1910350312 pmid:8699946
    CrossRefPubMedWeb of Science
  12. 12.↵
    1. Power JD,
    2. Barnes KA,
    3. Snyder AZ, et al
    . Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 2012;59:2142–54 doi:10.1016/j.neuroimage.2011.10.018 pmid:22019881
    CrossRefPubMedWeb of Science
  13. 13.↵
    1. Wu DH,
    2. Lewin JS,
    3. Duerk JL
    . Inadequacy of motion correction algorithms in functional MRI: role of susceptibility-induced artifacts. J Magn Reson Imaging 1997;7:365–70 doi:10.1002/jmri.1880070219 pmid:9090592
    CrossRefPubMed
  14. 14.↵
    1. Glover GH,
    2. Li TQ,
    3. Ress D
    . Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn Reson Med 2000;44:162–67 pmid:10893535
    CrossRefPubMedWeb of Science
  15. 15.↵
    1. Goto M,
    2. Abe O,
    3. Miyati T, et al
    . Head motion and correction methods in resting-state functional MRI. Magn Reson Med Sci 2016;15:178–86 doi:10.2463/mrms.rev.2015-0060 pmid:26701695
    CrossRefPubMed
  16. 16.↵
    1. Todd N,
    2. Josephs O,
    3. Callaghan MF, et al
    . Prospective motion correction of 3D echo-planar imaging data for functional MRI using optical tracking. Neuroimage 2015;113:1–12 doi:10.1016/j.neuroimage.2015.03.013 pmid:25783205
    CrossRefPubMed
  17. 17.↵
    1. Muraskin J,
    2. Ooi MB,
    3. Goldman RI, et al
    . Prospective active marker motion correction improves statistical power in BOLD fMRI. Neuroimage 2013;68:154–61 doi:10.1016/j.neuroimage.2012.11.052 pmid:23220430
    CrossRefPubMed
  18. 18.↵
    1. Schulz J,
    2. Siegert T,
    3. Bazin PL, et al
    . Prospective slice-by-slice motion correction reduces false positive activations in fMRI with task-correlated motion. Neuroimage 2014;84:124–32 doi:10.1016/j.neuroimage.2013.08.006 pmid:23954484
    CrossRefPubMed
  19. 19.↵
    1. McKeown MJ,
    2. Makeig S,
    3. Brown GG, et al
    . Analysis of fMRI data by blind separation into independent spatial components. Hum Brain Mapp 1998;6:160–88 pmid:9673671
    CrossRefPubMedWeb of Science
  20. 20.↵
    1. Biswal BB,
    2. Ulmer JL
    . Blind source separation of multiple signal sources of fMRI data sets using independent component analysis. J Comput Assist Tomogr 1999;23:265–71 doi:10.1097/00004728-199903000-00016 pmid:10096335
    CrossRefPubMedWeb of Science
  21. 21.↵
    1. Quigley MA,
    2. Haughton VM,
    3. Carew J, et al
    . Comparison of independent component analysis and conventional hypothesis-driven analysis for clinical functional MR image processing. AJNR Am J Neuroradiol 2002;23:49–58 pmid:11827875
    Abstract/FREE Full Text
  22. 22.↵
    1. Thomas CG,
    2. Harshman RA,
    3. Menon RS
    . Noise reduction in BOLD-based fMRI using component analysis. Neuroimage 2002;17:1521–37 doi:10.1006/nimg.2002.1200 pmid:12414291
    CrossRefPubMedWeb of Science
  23. 23.↵
    1. Smith SM,
    2. Jenkinson M,
    3. Woolrich MW, et al
    . Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 2004;23(suppl 1):S208–19 doi:10.1016/j.neuroimage.2004.07.051 pmid:15501092
    CrossRefPubMedWeb of Science
  24. 24.↵
    1. Jenkinson M,
    2. Bannister P,
    3. Brady M, et al
    . Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 2002;17:825–41 doi:10.1006/nimg.2002.1132 pmid:12377157
    CrossRefPubMedWeb of Science
  25. 25.↵
    1. Power JD,
    2. Mitra A,
    3. Laumann TO, et al
    . Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage 2014;84:320–41 doi:10.1016/j.neuroimage.2013.08.048 pmid:23994314
    CrossRefPubMed
  26. 26.↵
    1. Kelly RE Jr.,
    2. Alexopoulos GS,
    3. Wang Z, et al
    . Visual inspection of independent components: defining a procedure for artifact removal from fMRI data. J Neurosci Methods 2010;189:233–45 doi:10.1016/j.jneumeth.2010.03.028 pmid:20381530
    CrossRefPubMedWeb of Science
  27. 27.↵
    1. McKeown MJ,
    2. Hansen LK,
    3. Sejnowsk TJ
    . Independent component analysis of functional MRI: what is signal and what is noise? Curr Opin Neurobiol 2003;13:620–29 doi:10.1016/j.conb.2003.09.012 pmid:14630228
    CrossRefPubMedWeb of Science
  28. 28.↵
    1. Kochiyama T,
    2. Morita T,
    3. Okada T, et al
    . Removing the effects of task-related motion using independent-component analysis. Neuroimage 2005;25:802–14 doi:10.1016/j.neuroimage.2004.12.027 pmid:15808981
    CrossRefPubMedWeb of Science
  29. 29.↵
    1. Power JD,
    2. Fair DA,
    3. Schlaggar BL, et al
    . The development of human functional brain networks. Neuron 2010;67:735–48 doi:10.1016/j.neuron.2010.08.017 pmid:20826306
    CrossRefPubMedWeb of Science
  30. 30.↵
    1. Desmond JE,
    2. Atlas SW
    . Task-correlated head movement in fMR imaging: false activations can contaminate results despite motion correction. AJNR Am J Neuroradiol 2000;21:1370–71 pmid:11003264
    PubMed
  31. 31.↵
    1. Krüger G,
    2. Kastrup A,
    3. Glover GH
    . Neuroimaging at 1.5 T and 3.0 T: comparison of oxygenation-sensitive magnetic resonance imaging. Magn Reson Med 2001;45:595–604 doi:10.1002/mrm.1081 pmid:11283987
    CrossRefPubMedWeb of Science
  32. 32.↵
    1. Lund TE,
    2. Madsen KH,
    3. Sidaros K, et al
    . Non-white noise in fMRI: does modelling have an impact? Neuroimage 2006;29:54–66 doi:10.1016/j.neuroimage.2005.07.005 pmid:16099175
    CrossRefPubMedWeb of Science
  33. 33.↵
    1. White N,
    2. Roddey C,
    3. Shankaranarayanan A, et al
    . PROMO: real-time prospective motion correction in MRI using image-based tracking. Magn Reson Med 2010;63:91–105 doi:10.1002/mrm.22176 pmid:20027635
    CrossRefPubMed
  34. 34.↵
    1. Ward HA,
    2. Riederer SJ,
    3. Grimm RC, et al
    . Prospective multiaxial motion correction for fMRI. Magn Reson Med 2000;43:459–69 pmid:10725890
    CrossRefPubMedWeb of Science
  35. 35.↵
    1. Rotenberg D,
    2. Chiew M,
    3. Ranieri S, et al
    . Real-time correction by optical tracking with integrated geometric distortion correction for reducing motion artifacts in functional MRI. Magn Reson Med 2013;69:734–48 doi:10.1002/mrm.24309 pmid:22585554
    CrossRefPubMed
  36. 36.↵
    1. Dold C,
    2. Zaitsev M,
    3. Speck O, et al
    . Advantages and limitations of prospective head motion compensation for MRI using an optical motion tracking device. Acad Radiol 2006;13:1093–103 doi:10.1016/j.acra.2006.05.010 pmid:16935721
    CrossRefPubMed
  37. 37.↵
    1. Stone JV
    . Independent component analysis: an introduction. Trends Cogn Sci 2002;6:59–64 doi:10.1016/S1364-6613(00)01813-1 pmid:15866182
    CrossRefPubMedWeb of Science
  38. 38.↵
    1. Bhaganagarapu K,
    2. Jackson GD,
    3. Abbott DF
    . An automated method for identifying artifact in independent component analysis of resting-state FMRI. Front Hum Neurosci 2013;7:343 doi:10.3389/fnhum.2013.00343 pmid:23847511
    CrossRefPubMed
  39. 39.↵
    1. Sochat V,
    2. Supekar K,
    3. Bustillo J, et al
    . A robust classifier to distinguish noise from fMRI independent components. PLoS One 2014;9:e95493 doi:10.1371/journal.pone.0095493 pmid:24748378
    CrossRefPubMed
  40. 40.↵
    1. Salimi-Khorshidi G,
    2. Douaud G,
    3. Beckmann CF, et al
    . Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers. Neuroimage 2014;90:449–68 doi:10.1016/j.neuroimage.2013.11.046 pmid:24389422
    CrossRefPubMedWeb of Science
  41. 41.↵
    1. Tohka J,
    2. Foerde K,
    3. Aron AR, et al
    . Automatic independent component labeling for artifact removal in fMRI. Neuroimage 2008;39:1227–45 doi:10.1016/j.neuroimage.2007.10.013 pmid:18042495
    CrossRefPubMedWeb of Science
  42. 42.↵
    1. De Martino F,
    2. Gentile F,
    3. Esposito F, et al
    . Classification of fMRI independent components using IC-fingerprints and support vector machine classifiers. Neuroimage 2007;34:177–94 doi:10.1016/j.neuroimage.2006.08.041 pmid:17070708
    CrossRefPubMedWeb of Science
  43. 43.↵
    1. Pruim RH,
    2. Mennes M,
    3. van Rooij D, et al
    . ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data. Neuroimage 2015;112:267–77 doi:10.1016/j.neuroimage.2015.02.064 pmid:25770991
    CrossRefPubMed
  44. 44.↵
    1. Moritz CH,
    2. Haughton VM,
    3. Cordes D, et al
    . Whole-brain functional MR imaging activation from a finger-tapping task examined with independent component analysis. AJNR Am J Neuroradiol 2000;21:1629–35 pmid:11039341
    Abstract/FREE Full Text
  45. 45.↵
    1. Caulo M,
    2. Esposito R,
    3. Mantini D, et al
    . Comparison of hypothesis- and a novel hybrid data/hypothesis-driven method of functional MR imaging analysis in patients with brain gliomas. AJNR Am J Neuroradiol 2011;32:1056–64 doi:10.3174/ajnr.A2428 pmid:21393411
    Abstract/FREE Full Text
  46. 46.↵
    1. McKeown MJ
    . Detection of consistently task-related activations in fMRI data with hybrid independent component analysis. Neuroimage 2000;11:24–35 doi:10.1006/nimg.1999.0518 pmid:10686114
    CrossRefPubMedWeb of Science
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 38 (2)
American Journal of Neuroradiology
Vol. 38, Issue 2
1 Feb 2017
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Reduction of Motion Artifacts and Noise Using Independent Component Analysis in Task-Based Functional MRI for Preoperative Planning in Patients with Brain Tumor
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
E.H. Middlebrooks, C.J. Frost, I.S. Tuna, I.M. Schmalfuss, M. Rahman, A. Old Crow
Reduction of Motion Artifacts and Noise Using Independent Component Analysis in Task-Based Functional MRI for Preoperative Planning in Patients with Brain Tumor
American Journal of Neuroradiology Feb 2017, 38 (2) 336-342; DOI: 10.3174/ajnr.A4996

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Reduction of Motion Artifacts and Noise Using Independent Component Analysis in Task-Based Functional MRI for Preoperative Planning in Patients with Brain Tumor
E.H. Middlebrooks, C.J. Frost, I.S. Tuna, I.M. Schmalfuss, M. Rahman, A. Old Crow
American Journal of Neuroradiology Feb 2017, 38 (2) 336-342; DOI: 10.3174/ajnr.A4996
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • Recommended Resting-State fMRI Acquisition and Preprocessing Steps for Preoperative Mapping of Language and Motor and Visual Areas in Adult and Pediatric Patients with Brain Tumors and Epilepsy
  • Identifying brain areas for tactile perception through natural touch with MR-compatible tactile stimulus delivery system
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Kurtosis and Epileptogenic Tubers: A Pilot Study
  • Glutaric Aciduria Type 1: DK vs. Conventional MRI
  • Multiparametric MRI in PEDS Pontine Glioma
Show more Functional

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire