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ABSTRACT

BACKGROUND AND PURPOSE: Although it is a potentially powerful presurgical tool, fMRI can be fraught with artifacts, leading to
interpretive errors, many of which are not fully accounted for in routinely applied correction methods. The purpose of this investigation
was to evaluate the effects of data denoising by independent component analysis in patients undergoing preoperative evaluation for
glioma resection compared with more routinely applied correction methods such as realignment or motion scrubbing.

MATERIALS AND METHODS: Thirty-five functional runs (both motor and language) in 12 consecutive patients with glioma were analyzed
retrospectively by double-blind review. Data were processed and compared with the following: 1) realignment alone, 2) motion scrubbing,
3) independent component analysis denoising, and 4) both independent component analysis denoising and motion scrubbing. Primary
outcome measures included a change in false-positives, false-negatives, z score, and diagnostic rating.

RESULTS: Independent component analysis denoising reduced false-positives in 63% of studies versus realignment alone. There was also
an increase in the z score in areas of true activation in 71.4% of studies. Areas of new expected activation (previous false-negatives) were
revealed in 34.4% of cases with independent component analysis denoising versus motion scrubbing or realignment alone. Of studies deemed
nondiagnostic with realignment or motion scrubbing alone, 65% were considered diagnostic after independent component analysis denoising.

CONCLUSIONS: The addition of independent component analysis denoising of fMRI data in preoperative patients with glioma has a
significant impact on data quality, resulting in reduced false-positives and an increase in true-positives compared with more commonly
applied motion scrubbing or simple realignment methods.

ABBREVIATIONS: BOLD � blood oxygen level– dependent; ICA � independent component analysis; DVARS � root-mean-square of the derivatives of the
differentiated time courses of every brain voxel for each acquired volume; MD � mean displacement; TC � task correlation

Functional MR imaging has become a widely used tool for ex-

amining the function of the brain, during both tasks and rest.

Currently, the primary clinical impact of fMRI is in presurgical

planning, including both epilepsy and tumor applications. The

use of preoperative structural and functional images during brain

tumor resection has been shown to decrease the duration of the

operation, reduce operative complications, and improve patient

survival.1,2 Unfortunately, fMRI comes with limitations, several

of which can lead to impactful interpretive errors.

Blood oxygen level– dependent (BOLD) functional MR imag-

ing relies on the detection of subtle signal changes related to the

relationship of oxy- and deoxyhemoglobin as a surrogate marker

of neuronal activity.3,4 Ideally, signal change should not exist out-

side that created by perturbations of this balance in oxygenated

and deoxygenated blood; unfortunately, numerous other contri-

butions to the signal change confound fMRI data, such as artifacts

related to head motion, physiologic noise, and scanner-related

noise.5-8 In fact, at higher magnetic field strengths, including 3T,

the dominant signal in BOLD imaging has been shown to be re-

lated to physiologic noise.9

Unfortunately, many of the methods routinely used to correct

for these artifacts do not fully account for their effect on the

data.5,10-12 For example, the regularly used “motion correction”

algorithms in many fMRI processing programs simply result in

spatial realignment of individual voxels for the scan duration.

Used in this context, the term “motion correction” is a misnomer.
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It is essential to understand that these typical rigid-body motion-

correction algorithms do not account for significant variance in

the data produced by myriad motion-related artifacts.10,11,13 Two

major culprits are those related to a changing susceptibility profile

in the scanner and the effect of the spatial location of spin mag-

netization saturation, more commonly referred to as spin-history

artifacts.11 Likewise, numerous other prospective and retrospec-

tive methods designed to account for motion-, physiologic-, and

scanner-related effects have shown limited improvement.14-18

The use of independent component analysis (ICA) for remov-

ing the nuisance effects in fMRI data has grown in popularity.19-21

Fundamentally, ICA separates a mixture of signals in a dataset

into its individual signal components. ICA is commonly ex-

plained with the analogy of a cocktail party, in which the recorded,

indistinct sound from numerous conversations can be decon-

structed into individual voices. ICA denoising has been shown to

increase statistical significance and sensitivity, resulting in fewer

false-positives and false-negatives.22 The goal of our study was to

evaluate the role of ICA denoising on fMRI data of patients un-

dergoing preoperative planning for brain tumor resection.

MATERIALS AND METHODS
The requirement for informed consent was waived in this Health

Insurance Portability and Accountability Act– compliant retro-

spective study, which was approved by the University of Florida

institutional review board. Thirty-five runs from 12 consecutive

patients undergoing preoperative planning for glioma resection

were retrospectively reviewed. Various language (semantic deci-

sion [6/35], sentence completion [3/35], word generation [5/35],

picture naming [3/35]) and motor (finger [6/35], foot [4/35],

tongue [2/35], face [6/35]) paradigms were used. See On-line Ta-

ble 1 for details of the task designs. All patients were trained on the

tasks by the administering physician (E.H.M.).

Image Acquisition
MR imaging data were acquired on a 3T Verio scanner (Siemens,

Erlangen, Germany) with a 12-channel head coil. In an attempt to

minimize head motion, the head was tightly packed with mold-

able foam. The importance of reducing head motion was ex-

plained to patients. A volumetric T1-weighted MPRAGE se-

quence with a voxel size of 1 � 1 � 1 mm, TR � 2530 ms, TE � 3.5

ms, TI � 1100 ms, and flip angle � 7° was obtained. BOLD-EPI

images used a 3.5 � 3.5 � 3.5 mm voxel size with a 0.7-mm

intersection gap, TR � 2000 ms, TE � 30 ms, and flip angle � 78°,

with an oblique axial interleaved acquisition. All patients were

monitored and scanned by the administering physician (E.H.M.).

Data Processing
Echo-planar images were processed with the fMRIB Software Li-

brary (FSL, Version 5.0; http://www.fmrib.ox.ac.uk/fsl).23 Pre-

processing of all datasets included realignment (Motion Correc-

tion using FMRIB’s Linear Image Registration Tool [MCFLIRT];

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MCFLIRT),24 section-timing

correction, and spatial smoothing (5-mm full width at half max-

imum). The preprocessed data were then processed using 4 dif-

fering methods. First, the preprocessed, realigned data were pro-

cessed without any further manipulation. Second, motion

scrubbing was performed by regressing individual volumes that

exceeded a strict threshold for excessive section-signal variation

based primarily on mean displacement and root-mean-square of

the derivatives of the differentiated time courses of every brain

voxel for each acquired volume (DVARS), as described in Power

et al.25 Third, ICA analysis was performed (Multivariate Ex-

ploratory Linear Optimized Decomposition into Independent

Components [MELODIC]; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

MELODIC), and nuisance components were manually identified

by visual inspection of components by an experienced ICA user

(E.H.M.) and were removed by using the fsl_regfilt command.

The methodology of characterizing components as noise- or task-

related signal is based on the methodology used in the excellent re-

view presented in Kelly et al.26 Last, both ICA denoising and motion

scrubbing were performed, as previously described.

Data were analyzed using the FSL General Linear Model

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/GLM) with cluster thresh-

olding in FMRIB Expert Analysis Tool (FEAT; http://fsl.fmrib.ox.

ac.uk/fsl/fslwiki/FEAT). Identical threshold levels were applied

to all 4 processing methods to determine the effects of the 4 pro-

cessing pipelines on statistical significance. Processed EPI data

were then linearly registered to the T1-weighted structural images

(FMRIB Linear Image Registration [FLIRT]; http://www.fmrib.

ox.ac.uk). Data for all 4 processing methods were overlaid to

detect differences in each methodology. Two neuroradiolo-

gists with functional imaging experience (E.H.M., I.S.T.) inde-

pendently and blindly evaluated the overlaid data to assess the

presence or absence of expected activation based on the task,

amount of noise, and change in statistical significance (z score

variance) of the activated areas and whether any or all of the pro-

cessing methods were considered diagnostic. Diagnostic studies

were defined as showing all expected areas of activation for the given

task regardless of tumor location, to minimize the subjectivity of the

meaning of diagnostic versus nondiagnostic. The subjective mea-

sures of noise, new real areas of activation, and diagnostic ability for

each method resulted in 560 individual binary data points, which

were entered in to an assessment of reader agreement. Disagreements

were settled by a third blinded reader (I.M.S.).

Data Analysis
We extensively evaluated image quality and tabulated 3 primary

motion parameters: mean displacement (MD), task correlation

(TC), and DVARS. For MD, each functional run was placed in 1 of

3 categories from none/mild, moderate, to severe, as follows:

�1-mm MD throughout the study, 1- to 2-mm MD in �4 spikes,

or any MD of �2 mm or �1 mm for �4 spikes. Likewise, DVARS

was categorized as the following: no spikes of �5% signal change

from volume to volume, 1–5 spikes of �5%, or �5 spikes of

�5%. TC was categorized as r � 0.05, 0.05 � r � 0.2, or r � 0.2.

Due to the ordinal and nominal nature of the data, contin-

gency analysis was used with motion parameters (ordinal) as in-

dependent measurements to evaluate their relationships to the

nominal, binary (yes/no) response outcome measures. The Cochran-

Armitage exact test for trend was appropriate to capture the

power of the ordinal motion parameter measurements to assess

statistical significance; the Fisher exact test was used when the

motion parameter data were collapsed into binary variables
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(eg, assessing ICA-salvaged diagnostic studies). �2 was used to

assess expected-versus-observed effects among the 12 subjects,

including subject-level variation of the motion parameter severity

and comparing the number of diagnostic-versus-nondiagnostic

scans when realignment alone, motion scrubbing, ICA, or both

ICA and motion scrubbing was applied.

RESULTS
The 2 readers’ independent evaluations agreed in 97% (546/560)

of individual recorded data points; only 14 evaluations required a

tie-breaker with a blinded third reader (On-line Table 2).

Motion Parameters
The individual motion parameters are illustrated in Fig 1. A severe

rating was present in 1 of the 3 motion parameters in 60% (21/35)

of studies and in �1 motion parameter in 17% (6/35) of studies.

MD and DVARS were patient-specific: Half of patients had none/

mild MD (�2 � 35.5, P � .034), while half of patients accounted

for nearly all (17/20) moderate or severe DVARS (�2 � 39.3, P �

.013). In contrast, task-correlated motion of �0.05 was observed

in at least 1 paradigm in all 12 patients, with severe task-correlated

motion distributed across 8 patients (�2 � 20.6, P � .547). While

there were no statistical differences in motion parameters be-

tween language and motor studies, motor tasks accounted for 8 of

the 12 severe TC motion studies (On-line Fig 1).

fMRI Statistical Analyses
ICA denoising resulted in demonstrable improvement in overall

fMRI quality. ICA denoising decreased the level of noise (false-

positives) in the activation maps in 63% (22/35) of cases com-

pared with realignment alone. A reduction in noise after ICA de-

noising was not correlated with any individual motion parameter

or combination thereof. ICA also improved the statistical signifi-

cance in regions of expected activation in 71.4% (25/35) of cases

compared with realignment or motion scrubbing alone. ICA im-

proved fMRI statistics, as assessed by an increase in the z score in

areas of expected activation, in almost all scans with high MD (7/8

and 3/3 cases of moderate and severe MD, respectively; z � �1.75,

P � .040). Additionally, ICA improved fMRI statistics with mod-

erate or high TC (z � �1.80, P � .036) and when MD and TC

were considered together (z � �1.92, P � .049). New expected

areas of activation (previous false-negatives) were present only

after ICA denoising in 34.3% (12/35) of the datasets and were not

correlated with any motion parameter. Motion scrubbing alone

did not reveal new areas of expected activation (previous false-

negatives) compared with realignment alone or ICA. The combi-

nation of ICA and motion scrubbing showed no difference from

ICA alone.

Diagnostic Quality
Most important, ICA denoising improved the diagnostic value of

the fMRI studies (Fig 2). After realignment alone, 10 of the 12

patients had at least 1 nondiagnostic scan (�2 � 14.9, P � .186; Fig

2, upper graph), with 3 patients having all nondiagnostic-quality

scans. In all, 57% (20/35) of scans were deemed nondiagnostic

when corrected with realignment only. ICA denoising rendered

diagnostic 65% (13/20) of the previously nondiagnostic scans,

increasing the overall percentage of diagnostic scans from 42.9%

to 80.0% (�2 � 6.3, P � .001). Moreover, ICA denoising im-

proved the diagnostic outcome for 11 of 12 patients, with 8 pa-

FIG 1. Distribution of motion parameters in each individual subject
showing the number of functional runs characterized as having a
none/mild, moderate, or severe rating in each of the 3 recorded pa-
rameters (DVARS, task-correlated motion, and MD).

FIG 2. Distribution of diagnostic and nondiagnostic scans for each
correction method per subject.
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tients having all scans of diagnostic quality (�2 � 22.5, P � .021;

Fig 2, lower graph). Notably, all 7 scans (in 4 patients) that re-

mained nondiagnostic after ICA denoising contained severe TC

and/or DVARS (z � 2.76, P � .004). In contrast, motion scrub-

bing failed to improve any of these scans to the point of being

diagnostic (Fig 2, second graph), which is in line with the failure of

motion scrubbing to reveal any new areas of activation compared

with motion correction alone.

Motion scrubbing alone increased the statistical significance

in expected areas of activation in 20% (7/35) of the scans com-

pared with realignment alone but only showed improved statisti-

cal significance versus ICA denoising in 1 case (with low MD,

severe TC, and moderate DVARS). Motion scrubbing had the

greatest effect in those scans with moderate-severe ratings in TC

alone (z � �1.75, P � .040) or to a lesser extent when MD and TC

were considered together (z � �1.67, P � .054). The addition of

motion scrubbing to ICA denoising did not show any improve-

ment over ICA denoising alone.

DISCUSSION
Based on the previously reported success of ICA in improving

data quality in both task-based and resting-state fMRI studies, our

goal was to investigate its utility in preoperative planning for pa-

tients undergoing resection for gliomas. We found improvement

in statistical significance and decreased noise, resulting in fewer

false-positives and, perhaps more important, an increase in true-

positives, similar to findings in studies in patients without tu-

mors.20,27,28 We also found that a proportion of studies, other-

wise nondiagnostic when processed with traditional methods,

were diagnostic after ICA denoising.

As previously discussed, underlying motion-related artifacts,

physiologic noise, and scanner-related noise, which are ubiqui-

tous in fMRI, have serious detrimental effects on fMRI interpre-

tation. The first of these, subject motion, is becoming an increas-

ingly recognized cause of fMRI misinterpretation. For example, a

prominent theory in autism that touted decreased long-range

connections was eventually shown to be related to increased head

motion in the autistic group relative to controls.12,29 For any user

of fMRI, it is essential to have a thorough understanding of mo-

tion and related artifacts. An important tenet of high-quality

fMRI is homogeneity of the B0 magnetic field. When an object is

introduced into the bore of the scanner, the field becomes dis-

torted and is corrected for with a shimming procedure. However,

if the object moves once in the bore, this shim effect is lost and the

susceptibility profile of the object changes. This change can result

in drastic changes in signal intensity and geometric distortion that

cannot be corrected by typical realignment procedures.11,13 Shifts

as small as 2° can potentially create large areas of false-positive

activation regardless of intensive thresholding.13

A second major consideration regarding patient motion in

fMRI is signal change as a result of spin-history artifacts. Given the

typical short TRs in fMRI, the brain achieves a steady-state of

incomplete longitudinal magnetization recovery after a few TRs.

This recovery is slightly out of phase in any individual section.

Once the head moves, these voxels will be shifted into a different

plane, resulting in either a lower- or higher-than-expected

amount of recovery in sections obtained prior or subsequent to

the reference section, respectively. This unexpected change in

magnetization recovery can have a substantial effect on signal

intensity.11 While abrupt motion with a large amount of displace-

ment can have noticeable effects on the signal intensity, minimal

amounts of motion (�1-mm displacement) can have a substan-

tial impact on the data if the motion is frequent. Because this

movement is low-amplitude, one cannot expect to see significant

outliers in mean signal intensity across volumes. Spin-history ar-

tifacts are best assessed by DVARS, which assesses the volume-to-

volume signal change.25 In our data, we found this frequent, low-

amplitude motion (�1 mm) effect to be the most common source

of nondiagnostic studies.

Third, when signal fluctuations from artifacts, such as the

previously mentioned spin-history artifacts and susceptibility

changes, create a time-series similar to the experimental de-

sign, commonly referred to as “task-correlated motion,” the

artifactual component is generally inseparable from task-re-

lated signal change.8,28,30 Our results show that task-correlated

motion has a strong prevalence in nondiagnostic studies, includ-

ing studies that are not even improved by ICA denoising. Al-

though neurovascular uncoupling could potentially be the source

of these nondiagnostic studies, the prevalence of task-correlated

motion suggests that this may also be an etiology. Given the im-

pact of TC on study outcomes, the assessment of this parameter

should be a routine part of fMRI data quality analysis.

Physiologic noise is also a major source of variance in BOLD

fMRI data and is primarily related to fluctuations in basal metab-

olism, cardiac and respiratory effects, and subtle motion effects

from brain pulsation. In fact, it has been shown that physiologic

noise at a higher field strength (3T) is the dominant source of

noise in fMRI and even counteracts much of the gain in signal-

to-noise ratio and contrast-to-noise ratio when moving to higher

magnetic field strengths.9,31 Due to the typically short TRs used in

fMRI, the frequency of these artifacts results in their aliasing into

the task-related signal.7 Because this noise is structured, nonwhite

noise, it does not meet the statistical assumption that errors are

independent and identically distributed; therefore, it will have a

significant impact on most statistical modeling.32 Similarly, scan-

ner-related noise, such as thermal noise, drift, and imperfections

in the coil, radiofrequency, gradient, and shim subsystems and

various other minor contributors, produces similar effects.9 Our

study revealed a large decrease in false-positives with use of ICA

versus other methods; however, the ICA decrease in false-positives

did not correlate with any motion parameters. This finding could

suggest that removal of physiologic and scanner noise is also a major

contributor to improvement seen with ICA versus other methods.

Many attempts have been made to reduce artifacts in fMRI;

however, they remain extremely problematic. There are generally

2 types of artifact-correction systems, hypothesis-driven and

data-driven. Hypothesis-driven systems include prospective mo-

tion-correction systems, such as the use of navigator sequences,33,34

optical motion tracking,16,18,35 or methods of measuring physiologic

parameters during the scan (ie, heart rate, respiratory rate, and so

forth) that are then used to apply filters to the data or used as nuisance

regressors.7,14 Unfortunately, these methods have been difficult to

implement due to inaccurate cardiac or respiratory peak detection,

variability in results with differing TRs, lag in the motion data, and
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increased radiofrequency pulses resulting in decreased temporal res-

olution. Furthermore, no single method accounts for all sources of

noise present in the data.5,7,32,36

Data-driven approaches, such as removal or regression of vol-

umes with signal changes above a threshold (motion scrubbing)

or regression of motion parameters, do not account for all sources

of artifacts and have limited effect.5,25 The limited effect on qual-

ity improvement is evident when volumes are discarded on the

basis of motion parameters alone, because motion artifacts can

have serious detrimental effects, even with minor head motion

(�1 mm).8 Thus, more thorough parameters are needed when

using motion scrubbing, such as DVARS or frame-wise displace-

ment, which can detect very subtle artifactual changes in signal.25

Furthermore, motion scrubbing results in decreased statistical

power, particularly in data with numerous motion-affected vol-

umes, while images with detrimental artifacts that do not meet the

threshold for rejection still exist. Regression of the motion param-

eters can also have deleterious effects if the motion is correlated

with the task and therefore must be used with extreme caution in

task-based experiments.6 Even with these considerations, the overall

improvement gained by these methods is

minimal.5,12,25 This outcome is also likely

due, in part, to the lack of accounting for

physiologic and scanner-related noise.

There has been an increasing interest

in the use of ICA to denoise fMRI data to

improve the sensitivity and specificity of

results. The methodology behind ICA is

beyond the scope of this article (see

Stone37 for an excellent introduction),

but in short, ICA deconstructs an fMRI

time-series into unique components

(each having a spatial map and the

corresponding time course), which are

maximally spatially independent.19,22,28,37

These components can then be classified

as either artifactual/noise versus task-

related activity (see Kelly et al,26 for an

excellent review). In addition to manual

identification, numerous methods of

automated classification have been de-

scribed, primarily by using machine-

learning algorithms, but a discussion of

these methods is beyond the scope of

this article.38-43 The artifactual compo-

nents consist of a variety of physiologic

processes, motion-related artifacts, scanner-
related noise, aliasing, and so forth.
Once identified, these artifactual com-
ponents can be removed from the data-
set before statistical analysis, such as
with the General Linear Model. The im-
proved statistical modeling results in in-
creased sensitivity and specificity, with
reduction of false-positives and in-
creased true-positives (Fig 3).20,27,28

Previous studies evaluating the use of
ICA in task-based presurgical fMRI have

yielded mixed results.21,44,45 While these studies were the first to
explore ICA in the presurgical setting, they relied on the extrac-
tion of a single component from the ICA analysis results that best
modeled the task. This approach can be problematic because task-
related activation can often be distributed across multiple com-
ponents.46 An approach rendering the most accurate and reliable
results is to remove those components reflecting structured or
random noise during preprocessing and then to process the de-
noised dataset with statistical modeling. Additionally, these stud-
ies were performed at 1.5T, in which physiologic noise and sus-
ceptibility-related changes are substantially lower than at 3T, so
the results may not be directly applicable to higher field strengths.

The results of this study highlight the benefits of ICA denois-
ing in presurgical mapping for tumor resection, even at higher
field strengths. The reduction in false-positives related to these
nuisance variables also reduces the number of surgical false-pos-
itives. Furthermore, this reduction has the effect of providing the
surgeon with “cleaner” activation maps. Additionally, we have
demonstrated that in some cases, true-positive activation was
only identified with the use of ICA denoising, the lack of which
could have had detrimental effects on the operation (Fig 4). The

FIG 3. Processed fMRI data from 3 different subjects. Each case shows ICA-denoised data in blue,
motion-scrubbed data in red, and overlapping areas of ICA-denoised data and motion-scrubbed
data in green. The first case (A) is a motor finger task in a patient with a left parietal glioma. The
primary motor cortex for the right finger (arrow) is only seen after ICA denoising. Likewise,
the supplementary motor area (arrowhead) shows a slight increase in statistical significance.
The second subject (B) is undergoing a motor face task with severe task-correlated motion
and severe DVARS showing no major change in the primary motor face cortex (arrow);
however, the number of motion-related false-positives (noise) is markedly reduced. The
third case (C) is a semantic decision task in which no meaningful activation is present on the
motion-scrubbed data. Expected areas of activation in the anterior and posterior language
areas are clearly present after ICA denoising.
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appearance of otherwise undetected activation is likely due to
improved statistical significance achieved by the removal of overlap-
ping nuisance signal or artifacts in the area of true activation (Fig 5).
This effect was most dramatic in patients with a higher incidence of
motion-induced artifacts. However, when motion was correlated
with the task, the motion-induced signal changes were gener-
ally indistinguishable from the task itself and any improve-
ment in data quality with ICA denoising, as well as motion
scrubbing, was often negligible. Last, we have shown an overall
improvement in statistical significance of activated voxels with
the use of ICA denoising.

Notable limitations of the current study include its retrospec-
tive nature. Because limited evidence exists on the effects of ICA
denoising in the surgical setting, we do not believe that the pro-
spective use of this technique is yet warranted. In this retrospec-
tive design, a strong inherent bias is present when assessing
whether the results would alter patient treatment or decision-
making, and as such, this assessment was not included in the
analysis. Additionally, precise intraoperative mapping data were
not collected in a structured fashion; this omission limits the abil-
ity to directly correlate with surgical data in all patients. Likewise,
an inherent limitation of many surgical mapping studies is the
inability to test all activation sites from limited craniotomies. To

address these limitations, we relied on a double-blind expert re-
view of activation maps to assess activation in expected areas on
the basis of the task administered. We believe these limitations do
not detract from the objective of this study in identifying data-quality
improvement with ICA denoising relative to other standard methods
of fMRI data denoising. Future prospective studies should be aimed
at evaluating the impact on decision-making and patient outcomes.

CONCLUSIONS
The addition of ICA denoising of fMRI data in preoperative pa-

tients with glioma has a significant impact in data quality, result-

ing in reduced false-positives and an increase in true-positives

compared with more commonly applied motion scrubbing or

simple realignment methods.
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