Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleNeurointervention
Open Access

Generalized versus Patient-Specific Inflow Boundary Conditions in Computational Fluid Dynamics Simulations of Cerebral Aneurysmal Hemodynamics

I.G.H. Jansen, J.J. Schneiders, W.V. Potters, P. van Ooij, R. van den Berg, E. van Bavel, H.A. Marquering and C.B.L.M. Majoie
American Journal of Neuroradiology August 2014, 35 (8) 1543-1548; DOI: https://doi.org/10.3174/ajnr.A3901
I.G.H. Jansen
aFrom the Departments of Radiology (I.G.H.J., J.J.S., W.V.P., R.B., H.A.M., C.B.L.M.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.J. Schneiders
aFrom the Departments of Radiology (I.G.H.J., J.J.S., W.V.P., R.B., H.A.M., C.B.L.M.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W.V. Potters
aFrom the Departments of Radiology (I.G.H.J., J.J.S., W.V.P., R.B., H.A.M., C.B.L.M.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P. van Ooij
cDepartment of Radiology (P.O.), Northwestern University, Chicago, Illinois.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R. van den Berg
aFrom the Departments of Radiology (I.G.H.J., J.J.S., W.V.P., R.B., H.A.M., C.B.L.M.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E. van Bavel
bBiomedical Engineering and Physics (E.T.B., H.A.M.), Academic Medical Center, Amsterdam, the Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H.A. Marquering
aFrom the Departments of Radiology (I.G.H.J., J.J.S., W.V.P., R.B., H.A.M., C.B.L.M.M.)
bBiomedical Engineering and Physics (E.T.B., H.A.M.), Academic Medical Center, Amsterdam, the Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C.B.L.M. Majoie
aFrom the Departments of Radiology (I.G.H.J., J.J.S., W.V.P., R.B., H.A.M., C.B.L.M.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

REFERENCES

  1. 1.↵
    1. Brisman JL,
    2. Song JK,
    3. Newell DW
    . Cerebral aneurysms. N Engl J Med 2006;355:928–39
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. Taylor TN
    . The medical economics of stroke. Drugs 1997;54(suppl 3):51–57
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Taylor TN,
    2. Davis PH,
    3. Torner JC,
    4. et al
    . Lifetime cost of stroke in the United States. Stroke 1996;27:1459–66
    Abstract/FREE Full Text
  4. 4.↵
    1. Raymond J,
    2. Guilbert F,
    3. Weill A,
    4. et al
    . Long-term angiographic recurrences after selective endovascular treatment of aneurysms with detachable coils. Stroke 2003;34:1398–403
    Abstract/FREE Full Text
  5. 5.↵
    1. Murayama Y,
    2. Nien YL,
    3. Duckwiler G,
    4. et al
    . Guglielmi detachable coil embolization of cerebral aneurysms: 11 years' experience. J Neurosurg 2003;98:959–66
    CrossRefPubMedWeb of Science
  6. 6.↵
    The International Study of Unruptured Intracranial Aneurysms Investigators. Unruptured intracranial aneurysms: risk of rupture and risks of surgical interventions. N Engl J Med 1998;339:1725–33
    CrossRefPubMedWeb of Science
  7. 7.↵
    1. Tsutsumi K,
    2. Ueki K,
    3. Morita A,
    4. et al
    . Risk of rupture from incidental cerebral aneurysms. J Neurosurg 2000;93:550–53
    CrossRefPubMedWeb of Science
  8. 8.↵
    1. Juvela S,
    2. Porras M,
    3. Poussa K
    . Natural history of unruptured intracranial aneurysms: probability of and risk factors for aneurysm rupture. J Neurosurg 2000;93:379–87
    CrossRefPubMedWeb of Science
  9. 9.↵
    1. Metaxa E,
    2. Tremmel M,
    3. Natarajan SK,
    4. et al
    . Characterization of critical hemodynamics contributing to aneurysmal remodeling at the basilar terminus in a rabbit model. Stroke 2010;41:1774–82
    Abstract/FREE Full Text
  10. 10.↵
    1. Jou LD,
    2. Quick CM,
    3. Young WL,
    4. et al
    . Computational approach to quantifying hemodynamic forces in giant cerebral aneurysms. AJNR Am J Neuroradiol 2003;24:1804–10
    Abstract/FREE Full Text
  11. 11.↵
    1. Meng H,
    2. Tutino VM,
    3. Xiang J,
    4. et al
    . High WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis. AJNR Am J Neuroradiol 2014;35:1254–62
    Abstract/FREE Full Text
  12. 12.↵
    1. Boussel L,
    2. Rayz V,
    3. Mcculloch C,
    4. et al
    . Aneurysm growth occurs at region of low wall shear stress: patient-specific correlation of hemodynamics and growth in a longitudinal study. Stroke 2008;39:2997–3002
    Abstract/FREE Full Text
  13. 13.↵
    1. Xiang J,
    2. Natarajan SK,
    3. Tremmel M,
    4. et al
    . Hemodynamic-morphologic discriminants for intracranial aneurysm rupture. Stroke 2011;42:144–52
    Abstract/FREE Full Text
  14. 14.↵
    1. Ford MD,
    2. Alperin N
    . Characterization of volumetric flow rate waveforms in the normal internal carotid and vertebral arteries. Physiol Meas 2005;26:477–88
    CrossRefPubMedWeb of Science
  15. 15.↵
    1. Castro MA,
    2. Putman CM,
    3. Cebral JR
    . Computational fluid dynamics modeling of intracranial aneurysms: effects of parent artery segmentation on intra-aneurysmal hemodynamics. AJNR Am J Neuroradiol 2006;27:1703–09
    Abstract/FREE Full Text
  16. 16.↵
    1. Castro MA,
    2. Putman CM,
    3. Cebral JR
    . Patient-specific computational fluid dynamics modelling of anterior communicating artery aneurysms: a study of sensitivity of intra-aneurysmal flow patterns to flow conditions in the carotid arteries. AJNR Am J Neuroradiol 2006;27:2061–68
    Abstract/FREE Full Text
  17. 17.↵
    1. Cebral J,
    2. Sheridan M,
    3. Putman CM
    . Hemodynamics and bleb formation in intracranial aneurysms. AJNR Am J Neuroradiol 2010;31:304–10
    Abstract/FREE Full Text
  18. 18.↵
    1. Cebral JR,
    2. Castro MA,
    3. Burgess JE,
    4. et al
    . Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models. AJNR Am J Neuroradiol 2005;26:2550–59
    Abstract/FREE Full Text
  19. 19.↵
    1. Cebral JR,
    2. Löhner R
    . Efficient simulation of blood flow past complex endovascular devices using an adaptive embedding technique. IEEE Trans Med Imaging 2005;24:468–76
    CrossRefPubMedWeb of Science
  20. 20.↵
    1. Cebral JR,
    2. Pergolizzi RS,
    3. Putman CM
    . Computational fluid dynamics modeling of intracranial aneurysms: qualitative comparison with cerebral angiography. Acad Radiol 2007;14:804–13
    CrossRefPubMedWeb of Science
  21. 21.↵
    1. Dempere-Marco L,
    2. Oubel E,
    3. Castro M,
    4. et al
    . CFD analysis incorporating the influence of wall motion: application to intracranial aneurysms. Med Image Comput Comput Assist Interv 2006;9(pt 2):438–45
    PubMed
  22. 22.↵
    1. Ford MD,
    2. Stuhne GR,
    3. Nikolov HN,
    4. et al
    . Virtual angiography for visualization and validation of computational models of aneurysm hemodynamics. IEEE Trans Med Imaging 2005;24:1586–92
    CrossRefPubMedWeb of Science
  23. 23.↵
    1. Hoi Y,
    2. Woodward SH,
    3. Kim M,
    4. et al
    . Validation of CFD simulations of cerebral aneurysms with implication of geometric variations. J Biomech Eng 2006;128:844–51
    CrossRefPubMedWeb of Science
  24. 24.↵
    1. Imai Y,
    2. Sato K,
    3. Ishikawa T,
    4. et al
    . Inflow into saccular cerebral aneurysms at arterial bends. Ann Biomed Eng 2008;36:1489–95
    CrossRefPubMed
  25. 25.↵
    1. Mantha A,
    2. Karmonik C,
    3. Benndorf G,
    4. et al
    . Hemodynamics in a cerebral artery before and after the formation of an aneurysm. AJNR Am J Neuroradiol 2006;27:1113–18
    Abstract/FREE Full Text
  26. 26.↵
    1. Shojima M,
    2. Nemoto S,
    3. Morita A,
    4. et al
    . Role of shear stress in the blister formation of cerebral aneurysms. Neurosurgery 2010;67:1268–74
    CrossRefPubMed
  27. 27.↵
    1. Shojima M,
    2. Oshima M,
    3. Takagi K,
    4. et al
    . Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms. Stroke 2004;35:2500–05
    Abstract/FREE Full Text
  28. 28.↵
    1. Karmonik C,
    2. Yen C,
    3. Diaz O,
    4. et al
    . Temporal variations of wall shear stress parameters in intracranial aneurysms: importance of patient-specific inflow waveforms for CFD calculations. Acta Neurochir (Wien) 2010;152:1391–98, discussion 1398
    CrossRefPubMedWeb of Science
  29. 29.↵
    1. Karmonik C,
    2. Yen C,
    3. Grossman RG,
    4. et al
    . Intra-aneurysmal flow patterns and wall shear stresses calculated with computational flow dynamics in an anterior communicating artery aneurysm depend on knowledge of patient-specific inflow rates. Acta Neurochir (Wien) 2009;151:479–85, discussion 485
    CrossRefPubMedWeb of Science
  30. 30.↵
    1. Marzo A,
    2. Singh P,
    3. Larrabide I,
    4. et al
    . Computational hemodynamics in cerebral aneurysms: the effects of modeled versus measured boundary conditions. Ann Biomed Eng 2011;39:884–96
    CrossRefPubMed
  31. 31.↵
    1. Omodaka S,
    2. Sugiyama S,
    3. Inoue T,
    4. et al
    . Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluid dynamics analysis. Cerebrovasc Dis 2012;34:121–29
    CrossRefPubMed
  32. 32.↵
    1. Hassan T,
    2. Ezura M,
    3. Timofeev EV,
    4. et al
    . Computational simulation of therapeutic parent artery occlusion to treat giant vertebrobasilar aneurysm. AJNR Am J Neuroradiol 2004;25:63–68
    Abstract/FREE Full Text
  33. 33.↵
    1. Mitchell P,
    2. Kerr R,
    3. Mendelow AD,
    4. et al
    . Could late rebleeding overturn the superiority of cranial aneurysm coil embolization over clip ligation seen in the International Subarachnoid Aneurysm Trial? J Neurosurg 2008;108:437–42
    CrossRefPubMedWeb of Science
  34. 34.↵
    1. van Ooij P,
    2. Schneiders JJ,
    3. Marquering HA,
    4. et al
    . 3D cine phase-contrast MRI at 3T in intracranial aneurysms compared with patient-specific computational fluid dynamics. AJNR Am J Neuroradiol 2013;34:1785–91
    Abstract/FREE Full Text
  35. 35.↵
    1. Steinman DA,
    2. Hoi Y,
    3. Fahy P,
    4. et al
    . Variability of computational fluid dynamics solutions for pressure and flow in a giant aneurysm: the ASME 2012 Summer Bioengineering Conference CFD Challenge. J Biomech Eng 2013;135:021016
  36. 36.↵
    1. Cebral JR,
    2. Castro MA,
    3. Appanaboyina S,
    4. et al
    . Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity. IEEE Trans Med Imaging 2005;24:457–67
    CrossRefPubMedWeb of Science
  37. 37.↵
    1. Patankar SV,
    2. Spalding DB
    . A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int J Heat Mass Transf 1972;15:1787–806
    CrossRefWeb of Science
  38. 38.↵
    1. Byrne G,
    2. Mut F,
    3. Cebral JR
    . Quantifying the large-scale hemodynamics of intracranial aneurysms. AJNR Am J Neuroradiol 2014;35:333–38
    Abstract/FREE Full Text
  39. 39.↵
    1. Venugopal P,
    2. Valentino D,
    3. Schmitt H,
    4. et al
    . Sensitivity of patient-specific numerical simulation of cerebral aneurysm hemodynamics to inflow boundary conditions. J Neurosurg 2007;106:1051–60
    CrossRefPubMed
  40. 40.
    1. González-Alonso J,
    2. Dalsgaard MK,
    3. Osada T,
    4. et al
    . Brain and central haemodynamics and oxygenation during maximal exercise in humans. J Physiol 2004;557(pt 1):331–42
    CrossRefPubMedWeb of Science
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 35 (8)
American Journal of Neuroradiology
Vol. 35, Issue 8
1 Aug 2014
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Generalized versus Patient-Specific Inflow Boundary Conditions in Computational Fluid Dynamics Simulations of Cerebral Aneurysmal Hemodynamics
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
I.G.H. Jansen, J.J. Schneiders, W.V. Potters, P. van Ooij, R. van den Berg, E. van Bavel, H.A. Marquering, C.B.L.M. Majoie
Generalized versus Patient-Specific Inflow Boundary Conditions in Computational Fluid Dynamics Simulations of Cerebral Aneurysmal Hemodynamics
American Journal of Neuroradiology Aug 2014, 35 (8) 1543-1548; DOI: 10.3174/ajnr.A3901

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Generalized versus Patient-Specific Inflow Boundary Conditions in Computational Fluid Dynamics Simulations of Cerebral Aneurysmal Hemodynamics
I.G.H. Jansen, J.J. Schneiders, W.V. Potters, P. van Ooij, R. van den Berg, E. van Bavel, H.A. Marquering, C.B.L.M. Majoie
American Journal of Neuroradiology Aug 2014, 35 (8) 1543-1548; DOI: 10.3174/ajnr.A3901
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Acknowledgments
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • A practical strategy for data assimilation of cerebral intra-aneurysmal flows using a variational method with boundary control of velocity
  • Evaluation of aneurysm rupture risk based upon flowrate-independent hemodynamic parameters: a multi-center pilot study
  • Evaluation of aneurysm rupture risk based upon flowrate-independent hemodynamic parameters: a multi-center pilot study
  • How patient-specific do internal carotid artery inflow rates need to be for computational fluid dynamics of cerebral aneurysms?
  • A Hemodynamic Mechanism Correlating with the Initiation of MCA Bifurcation Aneurysms
  • Comparing Morphology and Hemodynamics of Stable-versus-Growing and Grown Intracranial Aneurysms
  • Subject-Specific Studies of CSF Bulk Flow Patterns in the Spinal Canal: Implications for the Dispersion of Solute Particles in Intrathecal Drug Delivery
  • Quantification of hemodynamic irregularity using oscillatory velocity index in the associations with the rupture status of cerebral aneurysms
  • Differences in Cerebral Aneurysm Rupture Rate According to Arterial Anatomies Depend on the Hemodynamic Environment
  • Comparison of intracranial aneurysm flow quantification techniques: standard PIV vs stereoscopic PIV vs tomographic PIV vs phase-contrast MRI vs CFD
  • Towards the Clinical utility of CFD for assessment of intracranial aneurysm rupture - a systematic review and novel parameter-ranking tool
  • Aneurysmal Parent Artery-Specific Inflow Conditions for Complete and Incomplete Circle of Willis Configurations
  • Better Than Nothing: A Rational Approach for Minimizing the Impact of Outflow Strategy on Cerebrovascular Simulations
  • Regarding "Differences in Hemodynamics and Rupture Rate of Aneurysms at the Bifurcation of the Basilar and Internal Carotid Arteries"
  • Inflow Jet Patterns of Unruptured Cerebral Aneurysms Based on the Flow Velocity in the Parent Artery: Evaluation Using 4D Flow MRI
  • Hemodynamic Differences in Intracranial Aneurysms before and after Rupture
  • Additional Value of Intra-Aneurysmal Hemodynamics in Discriminating Ruptured versus Unruptured Intracranial Aneurysms
  • The Computational Fluid Dynamics Rupture Challenge 2013--Phase I: Prediction of Rupture Status in Intracranial Aneurysms
  • Toward Improving Fidelity of Computational Fluid Dynamics Simulations: Boundary Conditions Matter
  • Crossref (71)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Cardiovascular magnetic resonance phase contrast imaging
    Krishna S. Nayak, Jon-Fredrik Nielsen, Matt A. Bernstein, Michael Markl, Peter D. Gatehouse, Rene M. Botnar, David Saloner, Christine Lorenz, Han Wen, Bob S. Hu, Frederick H. Epstein, John N. Oshinski, Subha V. Raman
    Journal of Cardiovascular Magnetic Resonance 2015 17 1
  • The biophysical role of hemodynamics in the pathogenesis of cerebral aneurysm formation and rupture
    Sauson Soldozy, Pedro Norat, Mazin Elsarrag, Ajay Chatrath, John S. Costello, Jennifer D. Sokolowski, Petr Tvrdik, M. Yashar S. Kalani, Min S. Park
    Neurosurgical Focus 2019 47 1
  • Real-World Variability in the Prediction of Intracranial Aneurysm Wall Shear Stress: The 2015 International Aneurysm CFD Challenge
    Kristian Valen-Sendstad, Aslak W. Bergersen, Yuji Shimogonya, Leonid Goubergrits, Jan Bruening, Jordi Pallares, Salvatore Cito, Senol Piskin, Kerem Pekkan, Arjan J. Geers, Ignacio Larrabide, Saikiran Rapaka, Viorel Mihalef, Wenyu Fu, Aike Qiao, Kartik Jain, Sabine Roller, Kent-Andre Mardal, Ramji Kamakoti, Thomas Spirka, Neil Ashton, Alistair Revell, Nicolas Aristokleous, J. Graeme Houston, Masanori Tsuji, Fujimaro Ishida, Prahlad G. Menon, Leonard D. Browne, Stephen Broderick, Masaaki Shojima, Satoshi Koizumi, Michael Barbour, Alberto Aliseda, Hernán G. Morales, Thierry Lefèvre, Simona Hodis, Yahia M. Al-Smadi, Justin S. Tran, Alison L. Marsden, Sreeja Vaippummadhom, G. Albert Einstein, Alistair G. Brown, Kristian Debus, Kuniyasu Niizuma, Sherif Rashad, Shin-ichiro Sugiyama, M. Owais Khan, Adam R. Updegrove, Shawn C. Shadden, Bart M. W. Cornelissen, Charles B. L. M. Majoie, Philipp Berg, Sylvia Saalfield, Kenichi Kono, David A. Steinman
    Cardiovascular Engineering and Technology 2018 9 4
  • Reproducibility and interobserver variability of systolic blood flow velocity and 3D wall shear stress derived from 4D flow MRI in the healthy aorta
    Pim van Ooij, Alexander L. Powell, Wouter V. Potters, James C. Carr, Michael Markl, and Alex J. Barker
    Journal of Magnetic Resonance Imaging 2016 43 1
  • Super-resolution and denoising of 4D-Flow MRI using physics-Informed deep neural nets
    Mojtaba F. Fathi, Isaac Perez-Raya, Ahmadreza Baghaie, Philipp Berg, Gabor Janiga, Amirhossein Arzani, Roshan M. D’Souza
    Computer Methods and Programs in Biomedicine 2020 197
  • Better Than Nothing: A Rational Approach for Minimizing the Impact of Outflow Strategy on Cerebrovascular Simulations
    C. Chnafa, O. Brina, V.M. Pereira, D.A. Steinman
    American Journal of Neuroradiology 2018 39 2
  • Towards the Clinical utility of CFD for assessment of intracranial aneurysm rupture – a systematic review and novel parameter-ranking tool
    Li Liang, David A Steinman, Olivier Brina, Christophe Chnafa, Nicole M Cancelliere, Vitor M Pereira
    Journal of NeuroInterventional Surgery 2019 11 2
  • The Computational Fluid Dynamics Rupture Challenge 2013—Phase II: Variability of Hemodynamic Simulations in Two Intracranial Aneurysms
    Philipp Berg, Christoph Roloff, Oliver Beuing, Samuel Voss, Shin-Ichiro Sugiyama, Nicolas Aristokleous, Andreas S. Anayiotos, Neil Ashton, Alistair Revell, Neil W. Bressloff, Alistair G. Brown, Bong Jae Chung, Juan R. Cebral, Gabriele Copelli, Wenyu Fu, Aike Qiao, Arjan J. Geers, Simona Hodis, Dan Dragomir-Daescu, Emily Nordahl, Yildirim Bora Suzen, Muhammad Owais Khan, Kristian Valen-Sendstad, Kenichi Kono, Prahlad G. Menon, Priti G. Albal, Otto Mierka, Raphael Münster, Hernán G. Morales, Odile Bonnefous, Jan Osman, Leonid Goubergrits, Jordi Pallares, Salvatore Cito, Alberto Passalacqua, Senol Piskin, Kerem Pekkan, Susana Ramalho, Nelson Marques, Stéphane Sanchi, Kristopher R. Schumacher, Jess Sturgeon, Helena Švihlová, Jaroslav Hron, Gabriel Usera, Mariana Mendina, Jianping Xiang, Hui Meng, David A. Steinman, Gábor Janiga
    Journal of Biomechanical Engineering 2015 137 12
  • Prediction of rupture risk in anterior communicating artery aneurysms with a feed-forward artificial neural network
    Jinjin Liu, Yongchun Chen, Li Lan, Boli Lin, Weijian Chen, Meihao Wang, Rui Li, Yunjun Yang, Bing Zhao, Zilong Hu, Yuxia Duan
    European Radiology 2018 28 8
  • The Computational Fluid Dynamics Rupture Challenge 2013—Phase I: Prediction of Rupture Status in Intracranial Aneurysms
    G. Janiga, P. Berg, S. Sugiyama, K. Kono, D.A. Steinman
    American Journal of Neuroradiology 2015 36 3

More in this TOC Section

  • Guided vs Conventional Angiography Systems
  • Rescue Reentry in Carotid Near-Occlusion
  • Contour Neurovascular System: Five Year Follow Up
Show more NEUROINTERVENTION

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire