Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleBrain
Open Access

Reliability of Longitudinal Brain Volume Loss Measurements between 2 Sites in Patients with Multiple Sclerosis: Comparison of 7 Quantification Techniques

F. Durand-Dubief, B. Belaroussi, J.P. Armspach, M. Dufour, S. Roggerone, S. Vukusic, S. Hannoun, D. Sappey-Marinier, C. Confavreux and F. Cotton
American Journal of Neuroradiology November 2012, 33 (10) 1918-1924; DOI: https://doi.org/10.3174/ajnr.A3107
F. Durand-Dubief
aFrom Service de Neurologie A et Fondation Eugène Devic EDMUS pour la Sclérose en Plaques (F.D.-D., M.D., S.R., S.V., C.C.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France
bCREATIS, UMR5220 CNRS & U1044 INSERM & Université de Lyon (F.D.-D., S.H., D.S.-M., F.C.), Villeurbanne, France
cUniversité de Lyon (F.D.-D., M.D., S.R., S.V., S.H., D.S.-M., C.C., F.C.), Lyon, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B. Belaroussi
dBIOCLINICA (B.B.), Lyon, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.P. Armspach
eInstitut de Physique Biologique (J.P.A.), Strasbourg, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Dufour
aFrom Service de Neurologie A et Fondation Eugène Devic EDMUS pour la Sclérose en Plaques (F.D.-D., M.D., S.R., S.V., C.C.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France
cUniversité de Lyon (F.D.-D., M.D., S.R., S.V., S.H., D.S.-M., C.C., F.C.), Lyon, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. Roggerone
aFrom Service de Neurologie A et Fondation Eugène Devic EDMUS pour la Sclérose en Plaques (F.D.-D., M.D., S.R., S.V., C.C.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France
cUniversité de Lyon (F.D.-D., M.D., S.R., S.V., S.H., D.S.-M., C.C., F.C.), Lyon, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. Vukusic
aFrom Service de Neurologie A et Fondation Eugène Devic EDMUS pour la Sclérose en Plaques (F.D.-D., M.D., S.R., S.V., C.C.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France
cUniversité de Lyon (F.D.-D., M.D., S.R., S.V., S.H., D.S.-M., C.C., F.C.), Lyon, France
fLyon Neuroscience Research Center (S.V., C.C.), INSERM U1028, CNRS UMR5292, Université Lyon 1, Lyon, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. Hannoun
bCREATIS, UMR5220 CNRS & U1044 INSERM & Université de Lyon (F.D.-D., S.H., D.S.-M., F.C.), Villeurbanne, France
cUniversité de Lyon (F.D.-D., M.D., S.R., S.V., S.H., D.S.-M., C.C., F.C.), Lyon, France
gDépartement IRM-CERMEP-Imagerie du Vivant (S.H., D.S.-M.), Bron, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D. Sappey-Marinier
bCREATIS, UMR5220 CNRS & U1044 INSERM & Université de Lyon (F.D.-D., S.H., D.S.-M., F.C.), Villeurbanne, France
cUniversité de Lyon (F.D.-D., M.D., S.R., S.V., S.H., D.S.-M., C.C., F.C.), Lyon, France
gDépartement IRM-CERMEP-Imagerie du Vivant (S.H., D.S.-M.), Bron, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C. Confavreux
aFrom Service de Neurologie A et Fondation Eugène Devic EDMUS pour la Sclérose en Plaques (F.D.-D., M.D., S.R., S.V., C.C.), Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France
cUniversité de Lyon (F.D.-D., M.D., S.R., S.V., S.H., D.S.-M., C.C., F.C.), Lyon, France
fLyon Neuroscience Research Center (S.V., C.C.), INSERM U1028, CNRS UMR5292, Université Lyon 1, Lyon, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
F. Cotton
bCREATIS, UMR5220 CNRS & U1044 INSERM & Université de Lyon (F.D.-D., S.H., D.S.-M., F.C.), Villeurbanne, France
cUniversité de Lyon (F.D.-D., M.D., S.R., S.V., S.H., D.S.-M., C.C., F.C.), Lyon, France
hService de Radiologie (F.C.), Centre Hospitalier de Lyon Sud, Pierre Bénite, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Filippi M,
    2. Mastronardo G,
    3. Rocca MA,
    4. et al
    . Quantitative volumetric analysis of brain magnetic resonance imaging from patients with multiple sclerosis. J Neurol Sci 1998;158:148–53
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. Simon JH,
    2. Jacobs LD,
    3. Campion MK,
    4. et al
    . A longitudinal study of brain atrophy in relapsing multiple sclerosis: the Multiple Sclerosis Collaborative Research Group (MSCRG). Neurology 1999;53:139–48
    Abstract/FREE Full Text
  3. 3.↵
    1. Horsfield MA,
    2. Rovaris M,
    3. Rocca MA,
    4. et al
    . Whole-brain atrophy in multiple sclerosis measured by two segmentation processes from various MRI sequences. J Neurol Sci 2003;216:169–77
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Sharma J,
    2. Sanfilipo MP,
    3. Benedict RH,
    4. et al
    . Whole-brain atrophy in multiple sclerosis measured by automated versus semiautomated MR imaging segmentation. AJNR Am J Neuroradiol 2004;25:985–96
    Abstract/FREE Full Text
  5. 5.↵
    1. Collins DL,
    2. Montagnat J,
    3. Zijdenbos AP,
    4. et al
    . Automated estimation of brain volume in multiple sclerosis with BICCR. Lect Notes Comput Sci 2001;2082:141–47
    CrossRef
  6. 6.↵
    1. Fischl B,
    2. Salat DH,
    3. Busa E,
    4. et al
    . Whole brain segmentation: automated labeling of neuroanatomical structures in human brain. Neuron 2002;33:341–55
    CrossRefPubMedWeb of Science
  7. 7.↵
    1. Freeborough PA,
    2. Fox NC.
    . The boundary shift integral: an accurate and robust measure of cerebral volume changes from registered repeat MRI. IEEE Trans Med Imaging 1997;16:623–29
    CrossRefPubMedWeb of Science
  8. 8.↵
    1. Freeborough PA,
    2. Fox NC,
    3. Kitney RI.
    . Interactive algorithms for the segmentation and quantitation of 3-D MRI brain scans. Comput Methods Programs Biomed 1997;53:15–25
    CrossRefPubMedWeb of Science
  9. 9.↵
    1. Smith SM,
    2. De Stefano N,
    3. Jenkinson M,
    4. et al
    . Normalized accurate measurement of longitudinal brain change. J Comput Assist Tomogr 2001;25:466–75
    CrossRefPubMedWeb of Science
  10. 10.↵
    1. Smith SM.
    . Fast robust automated brain extraction. Hum Brain Mapp 2002;17:143–55
    CrossRefPubMedWeb of Science
  11. 11.↵
    1. Ashburner J,
    2. Friston KJ.
    . Voxel-based morphometry—the methods. Neuroimage 2000;11:805–21
    CrossRefPubMedWeb of Science
  12. 12.↵
    1. Camara O,
    2. Schnabel JA,
    3. Ridgway GR,
    4. et al
    . Accuracy assessment of global and local atrophy measurement techniques with realistic simulated longitudinal Alzheimer's disease images. Neuroimage 2008;42:696–709
    CrossRefPubMed
  13. 13.↵
    1. Boyes RG,
    2. Rueckert D,
    3. Aljabar P,
    4. et al
    . Cerebral atrophy measurements using Jacobian integration: comparison with the boundary shift integral. Neuroimage 2006;32:159–69
    CrossRefPubMed
  14. 14.↵
    1. Camara O,
    2. Schweiger M,
    3. Scahill R,
    4. et al
    . Phenomenological model of diffuse global and regional atrophy using finite-element methods. IEEE Trans Med Imaging 2006;25:1417–30
    CrossRefPubMed
  15. 15.↵
    1. Cotton F,
    2. Weiner HL,
    3. Jolesz FA,
    4. et al
    . MRI contrast uptake in new lesions in relapsing–remitting multiple sclerosis followed at weekly intervals. Neurology 2003;30:640–46
  16. 16.↵
    1. Duning T,
    2. Kloska S,
    3. Streinstrater O,
    4. et al
    . Dehydration confounds the assessment of brain atrophy. Neurology 2005;64:548–50
    Abstract/FREE Full Text
  17. 17.↵
    1. Sampat MP,
    2. Healy BC,
    3. Meier DS,
    4. et al
    . Disease modelling in multiple sclerosis: assessment and quantification of sources of variability in brain parenchymal fraction measurements. Neuroimage 2010;52:1367–73
    CrossRefPubMed
  18. 18.↵
    1. Dalton CM,
    2. Chard DT,
    3. Davies GR,
    4. et al
    . Early development of multiple sclerosis is associated with progressive grey matter atrophy in patients presenting with clinically isolated syndromes. Brain 2004;127:1101–07
    Abstract/FREE Full Text
  19. 19.↵
    1. Gordon N.
    . Apparent cerebral atrophy in patients on treatment with steroids. Dev Med Child Neurol 1980;22:502–06
    PubMedWeb of Science
  20. 20.↵
    1. Hoogervorst EL,
    2. Polman CH,
    3. Barkhof F.
    . Cerebral volume changes in multiple sclerosis patients treated with high-dose intravenous methylprednisolone. Mult Scler 2002;8:415–19
    Abstract/FREE Full Text
  21. 21.↵
    1. Rao AB,
    2. Richert N,
    3. Howard T,
    4. et al
    . Methylprednisolone effect on brain volume and enhancing lesions in MS before and during IFNbeta-1b. Neurology 2002;59:688–94
    Abstract/FREE Full Text
  22. 22.↵
    1. Fox RJ,
    2. Fisher E,
    3. Tkach J,
    4. et al
    . Brain atrophy and magnetization transfer ratio following methylprednisolone in multiple sclerosis: short-term changes and long-term implications. Mult Scler 2005;11:140–45
    Abstract/FREE Full Text
  23. 23.↵
    1. Meier D,
    2. Weiner H,
    3. Guttmann C.
    . MR imaging intensity modelling of damage and repair in multiple sclerosis: relationship of short-term lesion recovery to progression and disability. AJNR Am J Neuroradiol 2007;28:1956–63
    Abstract/FREE Full Text
  24. 24.↵
    1. Pelletier D,
    2. Garrison K,
    3. Henry R.
    . Measurement of whole-brain atrophy in multiple sclerosis. J Neuroimaging 2004;14:11S–19S
    CrossRefPubMedWeb of Science
  25. 25.↵
    1. Bellon EM,
    2. Haacke EM,
    3. Coleman PE,
    4. et al
    . MR artifacts: a review. AJR Am J Roentgenol 1986;147:1271–81
    CrossRefPubMedWeb of Science
  26. 26.↵
    1. Caramanos Z,
    2. Fonov VS,
    3. Francis SJ,
    4. et al
    . Gradient distortion in MRI: characterizing and correcting for their effects on SIENA-generated measures of brain volume change. Neuroimage 2010;49:1601–11
    CrossRefPubMed
  27. 27.↵
    1. Jovicich J,
    2. Czanner S,
    3. Han X,
    4. et al
    . MRI-derived measurements of human subcortical, ventricular and intracranial brain volumes: reliability effects of scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner vendors and field strengths. Neuroimage 2009;46:177–92
    CrossRefPubMedWeb of Science
  28. 28.↵
    1. Han X,
    2. Jovicich J,
    3. Salat D,
    4. et al
    . Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer. Neuroimage 2006;32:180–94
    CrossRefPubMedWeb of Science
  29. 29.↵
    1. Jovicich J,
    2. Czanner S,
    3. Greve D,
    4. et al
    . Reliability in multi-site structural MRI studies: effects of gradient non-linearity correction on phantom and human data. Neuroimage 2006;30:436–43
    CrossRefPubMedWeb of Science
  30. 30.↵
    1. Karaçali B,
    2. Davatzikos C.
    . Simulation of tissue atrophy using a topology preserving transformation model. IEEE Trans Med Imaging 2006;25:649–52
    CrossRefPubMedWeb of Science
  31. 31.↵
    1. Pieperhoff P,
    2. Sudmeyer M,
    3. Homke L,
    4. et al
    . Detection of structural changes of the human brain in longitudinally acquired MR images by deformation field morphometry: methodological analysis, validation and application. Neuroimage 2008;43:269–87
    CrossRefPubMed
  32. 32.↵
    1. Sharma S,
    2. Noblet V,
    3. Rousseau F,
    4. et al
    . Evaluation of brain atrophy estimation algorithms using simulated ground-truth data. Med Image Anal 2010;14:373–89
    CrossRefPubMed
  33. 33.↵
    1. McDonald WI,
    2. Comtston DAS,
    3. G Edan G,
    4. et al
    . Diagnostic criteria for MS: guidelines from the international panel on the diagnosis of MS. Ann Neurol 2001;50:121–27
    CrossRefPubMedWeb of Science
  34. 34.↵
    1. Sled JG,
    2. Zijdenbos AP,
    3. Evans ACA.
    . Nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 1998;1:87–97
  35. 35.↵
    1. Boyes RG,
    2. Gunter JL,
    3. Frost C,
    4. et al
    . Intensity non-uniformity correction using N3 on 3-T scanners with multichannel phased array coils. Neuroimage 2008;39:1752–62
    CrossRefPubMed
  36. 36.↵
    1. Pachai C,
    2. Zhu YM,
    3. Guttmann C,
    4. et al
    . Unsupervised and adaptive segmentation of multispectral 3D magnetic resonance images of human brain: a generic approach. Int Conf Med Image Comput Comput Assist Interv 2001;4:1067–74
  37. 37.↵
    1. Fox NC,
    2. Freeborough PA.
    . Brain atrophy progression measured from registered serial MRI: validation and application to Alzheimer's disease. J Magn Reson Imaging 1997;7:1069–75
    PubMedWeb of Science
  38. 38.↵
    1. Leung KK,
    2. Clarkson MJ,
    3. Bartlett JW,
    4. et al
    . Robust atrophy rate measurement in Alzheimer's disease using multi-site serial MRI: tissue-specific intensity normalization and parameter selection. Neuroimage 2010;50:516–23
    CrossRefPubMed
  39. 39.↵
    1. Jenkinson M,
    2. Smith S.
    . A global optimisation method for robust affine registration of brain images. Med Image Anal 2001;36:143–56
  40. 40.↵
    1. Jenkinson M,
    2. Bannister P,
    3. Brady M,
    4. et al
    . Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 2002;17:824–41
  41. 41.↵
    1. Zhang Y,
    2. Brady M,
    3. Smith S.
    . Segmentation of brain MR images through a hidden Markov random field model and the expectation maximization algorithm. IEEE Trans Med Imaging 2001;20:45–57
    CrossRefPubMedWeb of Science
  42. 42.↵
    1. Christensen GE,
    2. Rabbitt RD,
    3. Miller MI.
    . Deformable templates using large deformation kinematics. IEEE Trans Med Imaging 1996;5:1435–47
  43. 43.↵
    1. Davatzikos C,
    2. Vaillant M,
    3. Resnick SM,
    4. et al
    . A computerized approach for morphological analysis of the corpus callosum. J Comput Assist Tomogr 1996;20:88–97
    CrossRefPubMedWeb of Science
  44. 44.↵
    1. Thompson PM,
    2. Giedd JN,
    3. Woods RP,
    4. et al
    . Growth patterns in the developing brain detected by using continuum mechanical tensor maps. Nature 2000;404:190–93
    CrossRefPubMedWeb of Science
  45. 45.↵
    1. Calmon G,
    2. Roberts N.
    . Automatic measurement of changes in brain volume on consecutive 3D MR images by segmentation propagation. Magn Reson Imaging 2000;18:439–53
    CrossRefPubMedWeb of Science
  46. 46.↵
    1. Hua X,
    2. Leow AD,
    3. Parikshak N,
    4. et al
    . Tensor-based morphometry as a neuroimaging biomarker for Alzheimer's disease: an MRI study of 676 AD, MCI, and normal subjects. Neuroimage 2008;43:458–69
    CrossRefPubMedWeb of Science
  47. 47.↵
    1. Klein A,
    2. Andersson J,
    3. Ardekani BA,
    4. et al
    . Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. Neuroimage 2009;46:786–802
    CrossRefPubMedWeb of Science
  48. 48.↵
    1. Vemuri BC,
    2. Ye J,
    3. Chen Y,
    4. et al
    . Image registration via level-set motion: applications to atlas-based segmentation. Med Image Anal 2003;7:1–20
    CrossRefPubMedWeb of Science
  49. 49.↵
    1. Wei X,
    2. Guttman CR,
    3. Warfeild SK,
    4. et al
    . Has your patient's multiple sclerosis lesion burden and brain atrophy actually changed? Mult Scler 2004;10:402–06
    Abstract/FREE Full Text
  50. 50.↵
    1. Jasperse B,
    2. Valsasina P,
    3. Neacsu V,
    4. et al
    . Intercenter agreement of brain atrophy measurement in multiple sclerosis patients using manually-edited SIENA and SIENAX. J Magn Reson Imaging 2007;26:881–85
    CrossRefPubMedWeb of Science
  51. 51.↵
    1. Dickerson BC,
    2. Fenstermacher E,
    3. Salat DH,
    4. et al
    . Detection of cortical thickness correlates of cognitive performance: reliability across MRI scan sessions, scanners, and field strengths. Neuroimage 2008;39:10–18
    CrossRefPubMedWeb of Science
  52. 52.↵
    1. Miller DH.
    . Biomarkers and surrogate outcomes in neurodegenerative disease: lessons from multiple sclerosis. Neuroradiology 2004;1:284–94
  53. 53.↵
    1. Bermel RA,
    2. Sharma J,
    3. Tjoa CW,
    4. et al
    . A semiautomated mesure of whole-brain atrophy in multiple sclerosis. J Neurol Sci 2003;208:57–65
    CrossRefPubMedWeb of Science
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 33 (10)
American Journal of Neuroradiology
Vol. 33, Issue 10
1 Nov 2012
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Reliability of Longitudinal Brain Volume Loss Measurements between 2 Sites in Patients with Multiple Sclerosis: Comparison of 7 Quantification Techniques
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
F. Durand-Dubief, B. Belaroussi, J.P. Armspach, M. Dufour, S. Roggerone, S. Vukusic, S. Hannoun, D. Sappey-Marinier, C. Confavreux, F. Cotton
Reliability of Longitudinal Brain Volume Loss Measurements between 2 Sites in Patients with Multiple Sclerosis: Comparison of 7 Quantification Techniques
American Journal of Neuroradiology Nov 2012, 33 (10) 1918-1924; DOI: 10.3174/ajnr.A3107

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Reliability of Longitudinal Brain Volume Loss Measurements between 2 Sites in Patients with Multiple Sclerosis: Comparison of 7 Quantification Techniques
F. Durand-Dubief, B. Belaroussi, J.P. Armspach, M. Dufour, S. Roggerone, S. Vukusic, S. Hannoun, D. Sappey-Marinier, C. Confavreux, F. Cotton
American Journal of Neuroradiology Nov 2012, 33 (10) 1918-1924; DOI: 10.3174/ajnr.A3107
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Cortical Thin Patch Fraction Reflects Disease Burden in MS: The Mosaic Approach
  • Effects of Ibudilast on MRI Measures in the Phase 2 SPRINT-MS Study
  • Detection of Volume-Changing Metastatic Brain Tumors on Longitudinal MRI Using a Semiautomated Algorithm Based on the Jacobian Operator Field
  • Teriflunomide slows BVL in relapsing MS: A reanalysis of the TEMSO MRI data set using SIENA
  • Lipoic acid in secondary progressive MS: A randomized controlled pilot trial
  • Cortical Thickness of Native Tibetans in the Qinghai-Tibetan Plateau
  • Predictive value of early brain atrophy on response in patients treated with interferon {beta}
  • Qualitative and Quantitative Analysis of MR Imaging Findings in Patients with Middle Cerebral Artery Stroke Implanted with Mesenchymal Stem Cells
  • Crossref (74)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Effect of high-dose simvastatin on brain atrophy and disability in secondary progressive multiple sclerosis (MS-STAT): a randomised, placebo-controlled, phase 2 trial
    Jeremy Chataway, Nadine Schuerer, Ali Alsanousi, Dennis Chan, David MacManus, Kelvin Hunter, Val Anderson, Charles R M Bangham, Shona Clegg, Casper Nielsen, Nick C Fox, David Wilkie, Jennifer M Nicholas, Virginia L Calder, John Greenwood, Chris Frost, Richard Nicholas
    The Lancet 2014 383 9936
  • Clinical Relevance of Brain Volume Measures in Multiple Sclerosis
    Nicola De Stefano, Laura Airas, Nikolaos Grigoriadis, Heinrich P. Mattle, Jonathan O’Riordan, Celia Oreja-Guevara, Finn Sellebjerg, Bruno Stankoff, Agata Walczak, Heinz Wiendl, Bernd C. Kieseier
    CNS Drugs 2014 28 2
  • Lipoic acid in secondary progressive MS
    Rebecca Spain, Katherine Powers, Charles Murchison, Elizabeth Heriza, Kimberly Winges, Vijayshree Yadav, Michelle Cameron, Ed Kim, Fay Horak, Jack Simon, Dennis Bourdette
    Neurology Neuroimmunology & Neuroinflammation 2017 4 5
  • A comparison of FreeSurfer-generated data with and without manual intervention
    Christopher S. McCarthy, Avinash Ramprashad, Carlie Thompson, Jo-Anna Botti, Ioana L. Coman, Wendy R. Kates
    Frontiers in Neuroscience 2015 9
  • Repeatability and reproducibility of FreeSurfer, FSL-SIENAX and SPM brain volumetric measurements and the effect of lesion filling in multiple sclerosis
    Chunjie Guo, Daniel Ferreira, Katarina Fink, Eric Westman, Tobias Granberg
    European Radiology 2019 29 3
  • Recommendations to improve imaging and analysis of brain lesion load and atrophy in longitudinal studies of multiple sclerosis
    H. Vrenken, M. Jenkinson, M. A. Horsfield, M. Battaglini, R. A. van Schijndel, E. Rostrup, J. J. G. Geurts, E. Fisher, A. Zijdenbos, J. Ashburner, D. H. Miller, M. Filippi, F. Fazekas, M. Rovaris, A. Rovira, F. Barkhof, N. de Stefano
    Journal of Neurology 2013 260 10
  • Advances in spinal cord imaging in multiple sclerosis
    Marcello Moccia, Serena Ruggieri, Antonio Ianniello, Ahmed Toosy, Carlo Pozzilli, Olga Ciccarelli
    Therapeutic Advances in Neurological Disorders 2019 12
  • Intra- and interscanner variability of magnetic resonance imaging based volumetry in multiple sclerosis
    Viola Biberacher, Paul Schmidt, Anisha Keshavan, Christine C. Boucard, Ruthger Righart, Philipp Sämann, Christine Preibisch, Daniel Fröbel, Lilian Aly, Bernhard Hemmer, Claus Zimmer, Roland G. Henry, Mark Mühlau
    NeuroImage 2016 142
  • Reproducibility and variability of quantitative magnetic resonance imaging markers in cerebral small vessel disease
    François De Guio, Eric Jouvent, Geert Jan Biessels, Sandra E Black, Carol Brayne, Christopher Chen, Charlotte Cordonnier, Frank-Eric De Leeuw, Martin Dichgans, Fergus Doubal, Marco Duering, Carole Dufouil, Emrah Duzel, Franz Fazekas, Vladimir Hachinski, M Arfan Ikram, Jennifer Linn, Paul M Matthews, Bernard Mazoyer, Vincent Mok, Bo Norrving, John T O’Brien, Leonardo Pantoni, Stefan Ropele, Perminder Sachdev, Reinhold Schmidt, Sudha Seshadri, Eric E Smith, Luciano A Sposato, Blossom Stephan, Richard H Swartz, Christophe Tzourio, Mark van Buchem, Aad van der Lugt, Robert van Oostenbrugge, Meike W Vernooij, Anand Viswanathan, David Werring, Frank Wollenweber, Joanna M Wardlaw, Hugues Chabriat
    Journal of Cerebral Blood Flow & Metabolism 2016 36 8
  • Prevalence and characteristics of migraine in CADASIL
    Stephanie Guey, Jérôme Mawet, Dominique Hervé, Marco Duering, Ophelia Godin, Eric Jouvent, Christian Opherk, Nassira Alili, Martin Dichgans, Hugues Chabriat
    Cephalalgia 2016 36 11

More in this TOC Section

  • White Matter Alterations in the Brains of Patients with Active, Remitted, and Cured Cushing Syndrome: A DTI Study
  • Qualitative and Quantitative Analysis of MR Imaging Findings in Patients with Middle Cerebral Artery Stroke Implanted with Mesenchymal Stem Cells
  • Fast Contrast-Enhanced 4D MRA and 4D Flow MRI Using Constrained Reconstruction (HYPRFlow): Potential Applications for Brain Arteriovenous Malformations
Show more Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire