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BACKGROUND AND PURPOSE: Brain volume loss is currently a MR imaging marker of neurodegenera-
tion in MS. Available quantification algorithms perform either direct (segmentation-based techniques)
or indirect (registration-based techniques) measurements. Because there is no reference standard
technique, the assessment of their accuracy and reliability remains a difficult goal. Therefore, the
purpose of this work was to assess the robustness of 7 different postprocessing algorithms applied to
images acquired from different MR imaging systems.

MATERIALS AND METHODS: Nine patients with MS were followed longitudinally over 1 year (3 time
points) on two 1.5T MR imaging systems. Brain volume change measures were assessed using 7
segmentation algorithms: a segmentation-classification algorithm, FreeSurfer, BBSI, KN-BSI, SIENA,
SIENAX, and JI algorithm.

RESULTS: Intersite variability showed that segmentation-based techniques and SIENAX provided large
and heterogeneous values of brain volume changes. A Bland-Altman analysis showed a mean differ-
ence of 1.8%, 0.07%, and 0.79% between the 2 sites, and a wide length agreement interval of
11.66%, 7.92%, and 11.94% for the segmentation-classification algorithm, FreeSurfer, and SIENAX,
respectively. In contrast, registration-based algorithms showed better reproducibility, with a low mean
difference of 0.45% for BBSI, KN-BSI and JI, and a mean length agreement interval of 1.55%. If SIENA
obtained a lower mean difference of 0.12%, its agreement interval of 3.29% was wider.

CONCLUSIONS: If brain atrophy estimation remains an open issue, future investigations of the accu-
racy and reliability of the brain volume quantification algorithms are needed to measure the slow and
small brain volume changes occurring in MS.

ABBREVIATIONS: BBSI � brain boundary shift integral; GM � gray matter; JI � Jacobian integra-
tion; KN-BSI � robust boundary shift integral; SEM � standard error of measurement; TBM �
tensor-based morphometry

Conventional MR imaging has proved to be the best way of
monitoring inflammation in MS. However, it lacks a reli-

able evaluation of the neurodegenerative component of the
disease. In the last decade, conventional MR-imaging– based
methods have been developed to provide sensitive and repro-

ducible assessments of brain volume loss that have increased
the interest in brain atrophy as an index of accurate assessment
and monitoring of MS progression.

Different approaches have been developed to assess brain
volume loss. Several algorithms are available to perform its
quantification, based either on direct or indirect measure-
ments. Thus, they are classified as segmentation-based and
registration-based techniques, respectively. Segmentation-
based techniques1,2 are based on tissue classification (CSF,
GM, and WM) in a semiautomated or automated way and
provide brain volume measures at a given time. While semi-
automated techniques are time-consuming and less repro-
ducible, automated techniques are found to be less accurate.3

Segmentation-based techniques such as brain parenchymal
fraction3,4 and brain to intracranial capacity ratio5 can be used
for cross-sectional studies by including normalization for
head size. FreeSurfer (http://surfer.nmr.mgh.harvard.edu),
one of the most recent automatic segmentation-based algo-
rithms, allows the measurement of specific brain anatomic
regions.6

Registration-based methods have been developed to im-
prove longitudinal evaluations. They include brain edge mo-
tion analysis for BBSI, KN-BSI,7,8 SIENA (http://www.fmrib.
ox.ac.uk/fsl),9,10 voxel-based statistical analysis for voxel-
based morphometry, statistical parametric mapping,11 and lo-
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IRM-CERMEP-Imagerie du Vivant (S.H., D.S.-M.), Bron, France; and Service de Radiologie
(F.C.), Centre Hospitalier de Lyon Sud, Pierre Bénite, France.

This research was sponsored by the French government grant PHRC 2004, referenced
2003.338 and entitled “Evaluation de l’atrophie cérébrale en IRM comme marqueur
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cal Jacobian determinant analysis after nonlinear matching
between coregistered images.12-14

However, brain volume loss estimations are affected by
physiopathologic factors such as dehydration, inflammation,
or steroid therapy15-24 and by technical factors such as MR
imaging contrast quality, signal-to-noise ratio, upgrades of
the MR imaging system, field inhomogeneity, and geometric
distortions related to gradients.25-29 Brain volume loss estima-
tion also depends on the reliability of the postprocessing algo-
rithms used. As no reference standard technique is available,
the robustness of each algorithm is thus difficult to estimate.
Recently, simulated brain volume loss measurements became
available and provide data of known atrophy.12,14,30-32 Despite
extensive use in epidemiologic series or clinical trials, valida-
tion of different techniques remains a major problem.

In this article, our objective was to compare the reliability
of brain volume change measurements across 2 MR imaging
sites of acquisition while using 7 different quantification
algorithms. The algorithms used for this comparison are a
segmentation-classification algorithm, FreeSurfer, BBSI, KN-
BSI, SIENA, SIENAX (http://www.fmrib.ox.ac.uk/fsl), and a
JI algorithm.

Materials and Methods

Patients
Nine patients were selected from a large cohort of 90 patients with MS

participating in a longitudinal, biannual clinical and MR imaging

follow-up. Patients were recruited from the MS clinic at the Neuro-

logic Hospital, Lyon, France. Inclusion criteria were definite MS, ac-

cording to the McDonald et al criteria,33 and age 18 –50 years. All

clinical subtypes were represented: clinically isolated syndromes, re-

lapsing-remitting MS, secondary-progressive MS, and primary-pro-

gressive MS. Exclusion criteria were pregnancy at inclusion and any

contraindication to a MR imaging examination. Immunoactive treat-

ments were allowed. All patients gave written informed consent to

participate in the longitudinal follow-up study, which was approved

by the local ethics committee. The 9 patients (2 women and 7 men; 3

relapse-remitting MS, 3 secondary-progressive MS and 3 primary-

progressive MS) were selected because they underwent MR imaging

examinations on 2 different MR imaging systems at 3 separate time

points over 1 year of follow-up—at inclusion and at 6 and 12 months.

Mean age at the inclusion was 41 years (range, 27– 46 years), mean

disease duration was 8 years (range, 2–18 years), and mean Expanded

Disability Status Scale score was 4.5 (range, 2– 6.5). Six patients re-

ceived an immunoactive treatment during the period of observation.

MR Imaging Follow-Up
MR imaging examinations were performed at the 3 evaluations over

a period of 1 year at each radiologic site. Images were acquired at least

1 month after a clinical relapse and/or a course of steroids. At each

time point, 2 MR imaging scans were consecutively performed on 2

different systems: a 1.5T Intera (Philips Healthcare, Best, The Neth-

erlands), located within the radiology department at the Neurologic

Hospital of Lyon (hereafter, MRI1), and a 1.5T Sonata system (Sie-

mens, Erlangen, Germany), located in the MR imaging department of

CERMEP-Imagerie du vivant (hereafter, MRI2). The MR imaging

protocol consisted of the acquisition of 3D millimetric T1 images

without gadolinium injection using a 3D T1 fast-field echo sequence

(TR, 7.56 ms; TE, 3.69 ms; matrix, 256 � 256; section thickness, 2

mm; reconstructed in 1 mm; 180 sections; scan time 7 minutes and 10

seconds) with MRI1, and a MPRAGE 3D T1 (inversion recovery–

turbo-flash; TR, 1970 ms; TE, 3.93 ms; TI, 1100 ms; matrix, 256 �

256; section thickness, 1 mm; integrated parallel acquisition tech-

niques, 2, 176 sections; scan time 4 minutes and 37 seconds) with

MRI2. The overall image count obtained in this follow-up was 27

acquisitions on each MR imaging system.

Image Analysis
Seven postprocessing software programs were assessed, including 2

segmentation-based algorithms—a Bayesian tissue classification al-

gorithm and FreeSurfer—and 5 registration-based algorithms: BBSI,

KN-BSI, SIENA, SIENAX, and JI. Image analysis was performed ran-

domly on the 27 pairs of images, blinded to patient clinical character-

istics and clinical status.

Preprocessing
With the exception of SIENA, SIENAX, and FreeSurfer, which have

their own preprocessing pipeline as part of the processing package,

preprocessing steps consisted of the following: automatic extraction

of the intracranial cavity mask at baseline; correction of intensity in-

homogeneities using the N3 technique34 for all time points; rigid reg-

istration of follow-up scans on the baseline scan, by optimizing mu-

tual information to correct for rotations and translations inside the

magnet; and differential bias field correction35 to correct for differ-

ences in intensity inhomogeneity artifacts.

Markov Random Field–Based Tissue Classification
The unsupervised and adaptive classification algorithm used for au-

tomatic segmentation of brain tissue into CSF, GM, and WM is de-

tailed elsewhere.36 The algorithm allows unsupervised classification

of the data in any number of tissue classes. It uses a statistical model

that includes Bayesian distributions for brain tissue intensities and

Gibbs Random Fields– based spatial contiguity constraints. Unsuper-

vision is derived from the data and adaptivity is achieved through the

variation of the size of the neighborhoods used for the estimation of

the intensity characteristics. This allows slow variations of signal in-

tensity in space to account for MR imaging intensity nonuniformity.

Each scan was independently processed and reviewed by an experi-

enced neurologist. Manual editing was performed to correct for clas-

sification errors.

FreeSurfer
The volume-based subcortical segmentation and surface-based

cortical reconstruction on 3D T1-weighted images was performed

using FreeSurfer software. The volume-based stream is an automated

process that resections 3D spoiled gradient-echo T1WI to approximately

1 mm3 voxel size for whole-brain tissue segmentation and specific sub-

cortical region tissue volumes. The stream consists of 5 different stages.6

Initially, the MR imaging volumes are registered to the Talairach space

and the output images are intensity normalized. At the next stage, the

skull is automatically stripped off the 3D anatomic dataset by a hybrid

method that uses both watershed algorithms and deformable surface

models. After skull stripping, the output brain mask is labeled using a

probabilistic atlas, where each voxel in the normalized brain mask vol-

ume is assigned 1 of the following labels: cerebral white matter, cerebral

cortex, lateral ventricle, inferior lateral ventricle, cerebellum white mat-

ter, cerebellum cortex, thalamus, caudate, putamen, pallidum, hip-

pocampus, amygdala, accumbens area, third ventricle, fourth ventricle,
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brain stem, and CSF. For this study, FreeSurfer was run automatically

with the default parameters.

BBSI and KN-BSI
BBSI is a semiautomated measure of global cerebral atrophy rates

from serial MR imaging images.7,37 The BBSI estimates the changes in

cerebral volume using differences in voxel intensities between 2 serial

MR imaging volume scans at the boundary region of the brain. BBSI

assumes that differences between registered scans near the boundaries

of cerebral structures are associated solely with the shifting of adjacent

tissue. To compute the BBSI, the baseline and follow-up whole-brain

regions are first delineated, using the classification algorithm previ-

ously described. A boundary and internal regions are obtained from

the pair of whole brain regions. Then, intensities of the baseline and

follow-up images are normalized by dividing these by the mean in-

tensity inside the internal regions, respectively. Finally, the BBSI is

computed within the boundary region using a prespecified manually

chosen intensity window (I1/I2 � 0.65/0.45 for site 1 and 0.50/0.70

for site 2). KN-BSI was proposed to improve the robustness and re-

producibility of boundary shift integral brain atrophy measurements

in multisite image studies.38 There are 2 main improvements of the

boundary shift integral: a specific intensity normalization is achieved

by using K-means clustering of brain tissues and linear regression

between their mean intensities. The intensity window is automatically

computed from K-means clustering results, independently for each

image.

SIENA
SIENA gives a fully automated analysis of whole-brain atrophy.9,10

It includes 2 stages of segmentation: Brain Extraction Tool and the

Automated Segmentation Tool from the FMRIB Software Library

(http://www.fmrib.ox.ac.uk/fsl). Brain Extraction Tool makes a his-

togram of intensities and then transforms the image into a binary

mask (object/background), which defines the center of gravity.10 The

2 brain images are registered to each other using the skull images.39,40

Then, FMRIB Automated Segmentation Tool classifies voxels within

the brain mask of Brain Extraction Tool, in at least 3 or 4 classes,

according to their intensities, to distinguish CSF from brain paren-

chyma and background, with or without GM-WM separation.41 The

resulting mask corresponds to brain parenchyma. Edge displacement

between the 2 time points is then estimated by aligning the peaks of

the spatial derivatives of the intensity profiles of both images, to sub-

voxel accuracy. Finally, the mean edge displacement is converted into

a global estimate of percentage brain volume change between the 2

time points. Full automation limits the interactivity of the software.

Errors during 1 of the processing steps require a restart of the whole

procedure. For this study, SIENA was run with no manual correction

and with the default parameters.

SIENAX
SIENAX gives a fully automated quantification of brain volume with

a normalization for head size.10 The algorithm extracts the skull and

brain masks from 1 time-point image, which are then registered to the

Montreal Neurological Institute 152 space. Images are thereby nor-

malized for head size using the skull images to determine the registra-

tion scaling. Tissue segmentation is then realized to calculate the brain

and gray and white matter volumes. The outputs provide normalized

and un-normalized volumes. For this study, SIENAX was run auto-

matically with the default parameters.

3D JI Using Tensor-Based Morphometry
TBM identifies regional structural differences, after nonlinear warp-

ing, between an image and a common anatomic template, for cross-

sectional analysis, or between 2 images of the same subject, for lon-

gitudinal analysis.42-44 A Jacobian matrix (referred to as “J”) is

obtained for each voxel by taking gradient derivatives of the deforma-

tion field resulting from the nonlinear warping.45 The determinant

of these Jacobian matrices (J) represent an expansion (J � 1) or a

contraction (J � 1) of each voxel after nonlinear warping, and can

be represented in 3D. These voxel changes, or Jacobian determinant

changes, are then integrated over the brain region to obtain an

atrophy estimation of that region. TBM requires little manual inter-

action and is recognized as a favorable technique for large-scale brain

studies.46 The TBM techniques differ in the nonlinear registration

algorithms used for the warping.47 In this study, the nonlinear regis-

tration technique detailed in Vemuri et al48 is used for warping, and

brain atrophy is estimated by comparing each follow-up scan to the

baseline scan. The expansion of the total intracranial CSF is quantified

as an indirect marker of the brain parenchyma volume loss in order to

limit any influence of the inflammatory activity within the brain

parenchyma.

Statistical Analysis
The statistical analysis compared the results of brain volume loss ob-

tained from each site. Intersite variability was measured by comparing

the results obtained by each technique in both sites, MRI1 and MRI2.

Comparisons were performed using first the Wilcoxon signed rank

for the comparison of the mean percentage of brain volume loss, and

then a Spearman correlation coefficient was established and tested. A

Bland-Altman analysis was also performed. Finally, the SEM was es-

timated as:

SEM�� 1

patients number�1
� �
patient i

(MRI1�MRI2)2

Results
A description of the means, standard deviations, and median
percentages of brain volume changes between the 7 techniques
is presented for each time point and each site, MRI1 (Table 1)
and MRI2 (Table 2). Fig 1 represents the changes in brain
volume obtained in both sites from the 7 techniques for
each patient. The results showed significant differences in
percentages between the 2 sites for segmentation-based tech-
niques, such as the segmentation-classification algorithm and
FreeSurfer. In contrast, the BBSI, KN-BSI, and JI methods
provided fairly stable results between the 2 sites. The results
were also similar for SIENA, except for 1 patient (number 4)
who presented a wide range of differences. SIENAX provided
variable and heterogeneous results between the 2 sites.

The Wilcoxon signed rank test used to compare the
results obtained from the 2 sites showed no significant differ-
ences between the 7 techniques. The Spearman correlation
coefficients were not significant. However, the Bland-Altman
analysis showed that segmentation-based techniques and
SIENAX provided greater mean differences and wider agree-
ment intervals than registration-based techniques (Fig 2). The
segmentation-classification algorithm obtained a mean differ-
ence of 1.80% between the 2 sites, with a large length agree-
ment interval of 11.66%. FreeSurfer provided a smaller mean

1920 Durand-Dubief � AJNR 33 � Nov 2012 � www.ajnr.org



difference, close to 0.07%, but kept a large length agreement
interval of 7.92%. In contrast, registration-based techniques
such as BBSI, KN-BSI, and JI algorithms were less sensitive to
MR imaging system changes. The mean difference for these 3
techniques was equal to 0.45%, with a mean length agreement
interval of 1.55%. SIENA obtained a reduced mean differ-
ence of 0.12% but a wider agreement interval of 3.29%. As
estimated by the SEM and the delta values, the variability
was larger for segmentation-based techniques and lower for
registration-based techniques (Table 3).

Discussion
As atrophy is a slow process leading to small changes, the tech-
niques used for its quantification have to be accurate and re-
liable.49 In this work, we performed a comparative study of
brain volume changes measured on 2 MR imaging systems,
across 3 time points over 1 year, to evaluate the intersite vari-
ability and robustness. The acquisitions were performed on
9 MS patients and postprocessed by 7 different methods.
The main findings showed that segmentation-based tech-
niques provided larger and more heterogeneous values of

Table 1: Description of the mean, standard deviation, and median percentages of atrophy between the 7 techniques at 6 and 12 months on
MRI1

Technique

6 months 12 months

Mean SD Median Mean SD Median
Segmentation-classification �0.03 2.87 �0.73 �0.64 0.95 �0.26
FreeSurfer �0.53 0.74 �0.61 �0.83 1.51 �0.81
BBSI �0.32 0.29 �0.33 �0.45 0.39 �0.46
KN-BSI �0.29 0.37 �0.38 �0.26 0.45 �0.34
SIENA �0.30 0.51 �0.34 �0.78 0.76 �0.85
SIENAX �0.94 2.26 �0.80 �0.66 2.88 �0.88
JI �0.26 0.12 �0.24 �0.26 0.16 �0.27

Table 2: Description of the mean, standard deviation and median percentages of atrophy between the 7 techniques at 6 and 12 months on
MRI2

Technique

6 months 12 months

Mean SD Median Mean SD Median
Segmentation-classification 1.78 1.13 1.76 2.08 1.86 2.39
FreeSurfer �0.60 1.37 �0.74 0.08 1.15 0.50
BBSI 0.53 0.20 0.55 0.61 0.49 0.35
KN-BSI �0.62 0.33 �0.68 �0.65 0.43 �0.75
SIENA �0.19 0.69 �0.13 �1.29 1.83 �0.76
SIENAX �0.14 1.42 0.22 �1.44 3.96 �0.23
JI �0.07 0.24 �0.06 �0.06 0.15 �0.03

Fig 1. Representation of the percentages of brain volume change at 12 months obtained between sites MRI1 (*) and MRI2 (e) by each of the 7 techniques: the segmentation-classification
algorithm, FreeSurfer, BBSI, KN-BSI, SIENA, SIENAX, and JI.
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brain volume changes than registration-based techniques.
Segmentation-based algorithms used in a semiautomatic way
(with manual correction) are theoretically considered as ref-
erence standard techniques, as they provide data for each
brain volume measurement from segmented masks validated
by an observer. However, due to necessary manual correc-
tions, these algorithms are time consuming and less repro-
ducible. Thus, automatic segmentation-based algorithms
are preferred.50 The most recent automatic segmentation al-
gorithm is FreeSurfer, which seemed more reliable than
the classification algorithm used in this work. Nevertheless,
segmentation-based algorithms are influenced by the quality
of the acquisitions. BBSI, KN-BSI, JI, and, to a lesser extent,
SIENA algorithms were less sensitive to MR imaging changes.
The mean difference for BBSI, KN-BSI and JI was close to
0.45% and for SIENA was 0.12%. Mean length agreement in-
tervals were, respectively, 1.55% for BBSI, KN-BSI and JI and
3.29% for SIENA. This is probably related to fewer errors in-
duced by the postprocessing based on registration. Otherwise,
the results obtained by SIENAX were more heterogeneous and

discordant, confirming that SIENAX should be reserved for
cross-sectional studies.

No matter which algorithm of quantification is used, sev-
eral factors of variability may interfere with the evaluation of
brain volume loss at a given time. Significant physiologic
changes related to age and state of hydration15,28,51 can lead to
amplitude of variation up to 0.70% of the brain volume.16,17 In
MS, inflammatory activity corresponding to the occurrence of
acute lesions transiently increases brain volume.18 At the
opposite end, treatments with high doses of corticosteroids
or disease-modifying treatments may significantly and tem-
porarily reduce brain volume.19-23,52 These physiopathologic
factors have a greater impact than the variations cause by
scan–rescan.17,53 In this study, these factors may not have in-
fluenced the results, as each patient was explored with each
MR imaging system on the same day, under the assumption
that changes caused by physiopathologic processes are not
likely to occur during that time. Acquisition-related factors
may also affect automated quantitative analysis results and
lead to an incorrect quantification.25 Within the same scanner

Fig 2. Representation of the results of the Bland-Altman analysis for comparing the results obtained between site MRI1 and MRI2 at 6 months by each of the 7 techniques: the
segmentation-classification algorithm, FreeSurfer, BBSI, KN-BSI, SIENA, SIENAX, and JI. These graphics represent the difference between the 2 sites, against the average value, of each
pair of measurements. A continuous line and 2 dotted lines were added to each scatterplot and depict the mean difference between the 2 sites and the limits of agreement, respectively.

Table 3: Bland-Altman analysis and standard error of measurement and corresponding delta values for the results obtained by the seven
techniques between the 2 sites MRI1 and MRI2

Technique

Bland-Altman Analysis Standard Error of
Measurement

Mean difference (%)

Limits of agreement

Inf Sup SEM �

Segmentation-classification 1.80 �4.03 7.63 3.54 9.80
Free Surfer �0.07 �3.53 3.39 1.77 4.90
BBSI 0.85 0.10 1.60 0.98 2.71
KN-BSI �0.33 �1.30 0.63 0.61 1.68
SIENA 0.12 �1.53 1.76 0.85 2.35
SIENAX 0.79 �5.18 6.76 3.16 8.76
JI 0.19 �0.32 0.70 0.33 0.91

Note:—� indicates the interval within which the observed differences can be attributed to variability of the measurement; Inf, inferior; Sup, superior.
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platform, upgrades do not significantly modify the results, but
differences of field strength may introduce a slight bias.27,28

However, in this study, the 2 systems were not upgraded and
the B0 fields were the same. In addition, inhomogeneity of the
B1 field can affect the reliability of tissue segmentation, as it
creates image intensity distortions. However, recent studies
using FreeSurfer software showed no significant changes when
using or not using a correction of B1 image intensity inhomo-
geneities.27,32 Patient positioning (Z-positioning) has an effect
on morphometric analyses in within-site or multisite evalua-
tions.26,29 It increases the mean absolute main error of SIENA
from 0.17% to 0.40%.26 The authors propose a correction for
the gradient distortion, which reduced this mean absolute er-
ror to 0.15%.26 The combination of datasets obtained from
different manufacturer MR imaging platforms introduces a
bias that should be considered in multisite studies.27,28

Conclusions
In this article, we evaluated the impact of changing MR
imaging systems on the results of brain volume quantification
and assessed the robustness of 7 postprocessing algorithms.
Intersite variability showed that segmentation-based tech-
niques provided larger and more heterogeneous results
than registration-based techniques. Segmentation-based algo-
rithms are influenced by the quality of the acquisitions, and
their use in longitudinal studies might not be recommended
because of their variability. In contrast, this study showed a
better reproducibility of the registration-based algorithms,
such as BBSI, KN-BSI, JI, and, to a lesser extent, SIENA, which
provided lower and more homogeneous results. Quantifica-
tion algorithms insensitive to the quality of MR imaging ac-
quisitions should be preferred, as MR imaging acquisitions are
usually performed on different MR imaging systems in clinical
practice. Nevertheless, MR imaging acquisitions should be
performed at the same MR imaging site in case of longitudinal
follow-ups. In the future, new postprocessing algorithms us-
ing field inhomogeneity and geometric distortion correction
are needed to improve the accuracy of brain volume change
quantification.
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