Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • Advancing NeuroMRI with High-Relaxivity Contrast Agents
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • Advancing NeuroMRI with High-Relaxivity Contrast Agents
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates


Improved Turnaround Times | Median time to first decision: 12 days

Research ArticleResearch Perspectives
Open Access

MR Imaging Features of High-Grade Gliomas in Murine Models: How They Compare with Human Disease, Reflect Tumor Biology, and Play a Role in Preclinical Trials

A.R. Borges, P. Lopez-Larrubia, J.B. Marques and S.G. Cerdan
American Journal of Neuroradiology January 2012, 33 (1) 24-36; DOI: https://doi.org/10.3174/ajnr.A2959
A.R. Borges
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P. Lopez-Larrubia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.B. Marques
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S.G. Cerdan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Barth RF,
    2. Kaur B
    . Rat brain tumor models in experimental neuro-oncology: the C6, 9L, T9, RG2, F98, BT4C, RT-2 and CNS-1 gliomas. J Neurooncol 2009;94:299–312
    CrossRefPubMed
  2. 2.↵
    1. Gutmann DH,
    2. Hunter-Schaedle K,
    3. Shannon KM
    . Harnessing preclinical mouse models to inform human clinical cancer trials. J Clin Invest 2006;116:847–52
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Fomchenko EI,
    2. Holland EC
    . Mouse models of brain tumors and their applications in preclinical trials. Clin Cancer Res 2006;12:5288–97
    Abstract/FREE Full Text
  4. 4.↵
    1. Miura FK,
    2. Alves MJ,
    3. Rocha MC,
    4. et al
    . Xenograft transplantation of human malignant astrocytoma cells into immunodeficient rats: an experimental model of glioblastoma. Clinics (Sao Paulo) 2010;65:305–09
    PubMed
  5. 5.↵
    1. Taillandier L,
    2. Antunes L,
    3. Angioi-Duprez K.S.
    . Models for neuro-oncological preclinical studies: solid orthotopic and heterotopic grafts of human gliomas into nude mice. J Neurosci Methods 2003;125:147–57
    CrossRefPubMedWeb of Science
  6. 6.↵
    1. Wang J,
    2. Miletic H,
    3. Sakariassen PØ,
    4. et al
    . A reproducible brain tumour model established from human glioblastoma biopsies. BMC Cancer 2009;9:465
    CrossRefPubMed
  7. 7.↵
    1. Holland EC
    . Brain tumor animal models: importance and progress. Curr Opin Oncol 2001;13:143–47
    CrossRefPubMedWeb of Science
  8. 8.↵
    1. Weiss WA,
    2. Israel M,
    3. Cobbs C,
    4. et al
    . Neuropathology of genetically engineered mice: consensus report and recommendations from an international forum. Oncogene 2002;21:453–63
  9. 9.↵
    1. Xie Q,
    2. Thompson R,
    3. Hardy K,
    4. et al
    . A highly invasive human glioblastoma pre-clinical model for testing therapeutics. J Transl Med 2008;6:77
    CrossRefPubMed
  10. 10.↵
    1. Aldape K,
    2. Colman H,
    3. James C
    . Models of malignant glioma. Drug Discovery Today: Disease Models 2996;3:191–96
  11. 11.↵
    1. Smilowitz HM,
    2. Weissenberger J,
    3. Weis J,
    4. et al
    . Orthotopic transplantation of v-src-expressing glioma cell lines into immunocompetent mice: establishment of a new transplantable in vivo model for malignant glioma. J Neurosurg 2007;106:652–59
    CrossRefPubMedWeb of Science
  12. 12.↵
    1. Huse JT,
    2. Holland EC
    . Genetically engineered mouse models of brain cancer and the promise of preclinical testing. Brain Pathol 2009;19:132–43
    CrossRefPubMedWeb of Science
  13. 13.↵
    1. Marumoto T,
    2. Tashiro A,
    3. Friedmann-Morvinski D,
    4. et al
    . Development of a novel mouse glioma model using lentiviral vectors. Nat Med 2009;15:110–06. Epub 2009 Jan 4
    CrossRefPubMedWeb of Science
  14. 14.↵
    1. Masdeu JC,
    2. Bakshi R
    . Neuroimaging: anything to do with neurotherapeutics? NeuroRx 2005;2:163–66
    CrossRefPubMed
  15. 15.↵
    1. Lyons SK
    . Advances in imaging mouse tumour models in vivo. J Pathol 2005;205:194–205
    CrossRefPubMedWeb of Science
  16. 16.↵
    1. Nieman BJ,
    2. Bock NA,
    3. Bishop J,
    4. et al
    . Magnetic resonance imaging for detection and analysis of mouse phenotypes. NMR Biomed 2005;18:447–68
    CrossRefPubMedWeb of Science
  17. 17.↵
    1. Lal S,
    2. Lacroix M,
    3. Tofilon P,
    4. et al
    . An implantable guide-screw system for brain tumor studies in small animals. J Neurosurg 2000;92:326–333
    PubMedWeb of Science
  18. 18.↵
    1. Collier LS,
    2. Adams DJ,
    3. Hackett CS,
    4. et al
    . Whole-body sleeping beauty mutagenesis can cause penetrant leukemia/lymphoma and rare high-grade glioma without associated embryonic lethality. Cancer Res 2009;69:8429–37. Epub 2009 Oct 20
    Abstract/FREE Full Text
  19. 19.↵
    1. de Groot JF,
    2. Fuller G,
    3. Kumar AJ,
    4. et al
    . Tumor invasion after treatment of glioblastoma with bevacizumab: radiographic and pathologic correlation in humans and mice. Neuro Oncol 2010;12:233–42. Epub 2010 Jan 6
    Abstract/FREE Full Text
  20. 20.↵
    1. Radaelli E,
    2. Ceruti R,
    3. Patton V,
    4. et al
    . Immunohistopathological and neuroimaging characterization of murine orthotopic xenograft models of glioblastoma multiforme recapitulating the most salient features of human disease. Histol Histopathol 2009;24:879–91
    PubMed
  21. 21.↵
    1. Johnson GA,
    2. Cofer GP,
    3. Gewalt SL,
    4. et al
    . Morphologic phenotyping with MR microscopy: the visible mouse. Radiology 2002;222:789–93
    PubMedWeb of Science
  22. 22.↵
    1. Dazai J,
    2. Bock NA,
    3. Nieman BJ,
    4. et al
    . Multiple mouse biological loading and monitoring system for MRI. Magn Reson Med 2004;52:709–15
    CrossRefPubMedWeb of Science
  23. 23.↵
    1. Righi V,
    2. Roda JM,
    3. Paz J,
    4. et al
    . 1H HR-MAS and genomic analysis of human tumor biopsies discriminate between high and low grade astrocytomas. NMR Biomed 2009;22:629–37
    CrossRefPubMedWeb of Science
  24. 24.↵
    1. Jost SC,
    2. Wanebo JE,
    3. Song SK,
    4. et al
    . In vivo imaging in a murine model of glioblastoma. Neurosurgery 2007;60:360–70, discussion 370–71
    PubMed
  25. 25.↵
    1. Radaelli E,
    2. Ceruti R,
    3. Patton V,
    4. et al
    . Immunohistopathological and neuroimaging characterization of murine orthotopic xenograft models of glioblastoma multiforme recapitulating the most salient features of human disease. Histol Histopathol 2009;24:879–91
    PubMed
  26. 26.↵
    1. Koutcher JA,
    2. Hu X,
    3. Xu S,
    4. et al
    . MRI of mouse models for gliomas shows similarities to humans and can be used to identify mice for preclinical trials. Neoplasia 2002;4:480–85
    CrossRefPubMed
  27. 27.↵
    1. Gordon J,
    2. Mohamed F,
    3. Vinitski S,
    4. et al
    . Utilization of experimental animal model for correlative multispectral MRI and pathological analysis of brain tumors. Magn Reson Imaging 1999;17:1495–502
    CrossRefPubMed
  28. 28.↵
    1. Kemper EM,
    2. Leenders W,
    3. Küsters B,
    4. et al
    . Development of luciferase tagged brain tumour models in mice for chemotherapy intervention studies. Eur J Cancer 2006;2:3294–303. Epub 2006 Oct 5
  29. 29.↵
    1. Davis SC,
    2. Pogue BW,
    3. Springett R,
    4. et al
    . Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue. Rev Sci Instrum 2008;79:064302
    CrossRefPubMed
  30. 30.↵
    1. Rehemtulla A,
    2. Stegman LD,
    3. Cardozo SJ,
    4. et al
    . Rapid and quantitative assessment of cancer treatment response using in vivo bioluminescence imaging. Neoplasia 2000;2:491–95
    CrossRefPubMedWeb of Science
  31. 31.↵
    1. Szentirmai O,
    2. Baker CH,
    3. Lin N,
    4. et al
    . Noninvasive bioluminescence imaging of luciferase expressing intracranial U87 xenografts: correlation with magnetic resonance imaging determined tumor volume and longitudinal use in assessing tumor growth and antiangiogenic treatment effect. Neurosurgery 2006;58:365–72, discussion 365–72
    CrossRefPubMedWeb of Science
  32. 32.↵
    1. Bryant MJ,
    2. Chuah TL,
    3. Luff J,
    4. et al
    . A novel rat model for glioblastoma multiforme using a bioluminescent F98 cell line. J Clin Neurosci 2008;15:545–51
    CrossRefPubMed
  33. 33.↵
    1. Li X,
    2. Rooney WD,
    3. Várallyay CG,
    4. et al
    . Dynamic-contrast-enhanced-MRI with extravasating contrast reagent: rat cerebral glioma blood volume determination. J Magn Reson 2010;206:190–99. Epub 2010 Jul 31
    CrossRefPubMed
  34. 34.↵
    1. Adzamli K,
    2. Yablonskiy DA,
    3. Chicoine MR,
    4. et al
    . Albumin-binding MR blood pool agents as MRI contrast agents in an intracranial mouse glioma model. Magn Reson Med 2003;49:586–90
    CrossRefPubMed
  35. 35.↵
    1. Goldbrunner RH,
    2. Wagner S,
    3. Roosen K,
    4. et al
    . Models for assessment of angiogenesis in gliomas. J Neurooncol 2000;50:53–62
    CrossRefPubMed
  36. 36.↵
    1. Sun Y,
    2. Schmidt NO,
    3. Schmidt K,
    4. et al
    . Perfusion MRI of U87 brain tumors in a mouse model. Magn Reson Med 2004;51:893–99
    CrossRefPubMedWeb of Science
  37. 37.↵
    1. Veeravagu A,
    2. Hou LC,
    3. Hsu AR,
    4. et al
    . The temporal correlation of dynamic contrast-enhanced magnetic resonance imaging with tumor angiogenesis in a murine glioblastoma model. Neurol Res 2008;30:952–59. Epub 2008 Jul 25
    CrossRefPubMedWeb of Science
  38. 38.↵
    1. Cha S,
    2. Johnson G,
    3. Wadghiri YZ,
    4. et al
    . Dynamic, contrast-enhanced perfusion MRI in mouse gliomas: correlation with histopathology. Magn Reson Med 2003;49:848–55
    CrossRefPubMedWeb of Science
  39. 39.↵
    1. Gossmann A,
    2. Helbich TH,
    3. Kuriyama N,
    4. et al
    . Dynamic contrast-enhanced magnetic resonance imaging as a surrogate marker of tumor response to anti-angiogenic therapy in a xenograft model of glioblastoma multiforme. J Magn Reson Imaging 2002;15:233–40
    CrossRefPubMedWeb of Science
  40. 40.↵
    1. Muir ER,
    2. Shen Q,
    3. Duong TQ
    . Cerebral blood flow MRI in mice using the cardiac-spin-labeling technique. Magn Reson Med 2008;60:744–48
    CrossRefPubMedWeb of Science
  41. 41.↵
    1. Wong ET,
    2. Brem S
    . Antiangiogenesis treatment for glioblastoma multiforme: challenges and opportunities. J Natl Compr Canc Netw 2008;6:515–22
    Abstract/FREE Full Text
  42. 42.↵
    1. Nagaraja TN,
    2. Ewing JR,
    3. Karki K,
    4. et al
    . MRI and quantitative autoradiographic studies following bolus injections of unlabeled and (14)C-labeled gadolinium-diethylenetriaminepentaacetic acid in a rat model of stroke yield similar distribution volumes and blood-to-brain influx rate constants. NMR Biomed 2011;24:547–58. Epub 2010 Dec 12
    CrossRefPubMedWeb of Science
  43. 43.↵
    1. Sipkins DA,
    2. Cheresh DA,
    3. Kazemi MR
    . Detection of tumor angiogenesis in vivo by alphaVbeta3-targeted magnetic resonance imaging. Nat Med 1998;4:623–26
    CrossRefPubMedWeb of Science
  44. 44.↵
    1. Moffat BA,
    2. Hall DE,
    3. Stojanovska J,
    4. et al
    . , Diffusion imaging for evaluation of tumor therapies in preclinical animal models. MAGMA 2004;17:249–59. Epub 2004 Dec 1
    CrossRefPubMed
  45. 45.↵
    1. Chenevert TL,
    2. Stegman LD,
    3. Taylor JM,
    4. et al
    . Diffusion magnetic resonance imaging: an early surrogate marker of therapeutic efficacy in brain tumors. J Natl Cancer Inst 2000;92:2029–36
    Abstract/FREE Full Text
  46. 46.↵
    1. Sun Y,
    2. Mulkern RV,
    3. Schmidt K,
    4. et al
    . Quantification of water diffusion and relaxation times of human U87 tumors in a mouse model. NMR Biomed 2004;17:399–404
    CrossRefPubMed
  47. 47.↵
    1. Fan G,
    2. Zang P,
    3. Jing F,
    4. et al
    . Usefulness of diffusion/perfusion-weighted MRI in rat gliomas: correlation with histopathology. Acad Radiol 2005;12:640–51
    CrossRefPubMedWeb of Science
  48. 48.↵
    1. Pacheco-Torres J,
    2. López-Larrubia P,
    3. Ballesteros P,
    4. et al
    . Imaging tumor hypoxia by magnetic resonance methods. NMR Biomed 2011;24:1–16. Epub 2010 Dec 9
    CrossRefPubMed
  49. 49.↵
    1. Yetkin FZ,
    2. Mendelsohn D
    . Hypoxia imaging in brain tumors. Neuroimaging Clin N Am 2002;12:537–52
    CrossRefPubMedWeb of Science
  50. 50.↵
    1. de Vries NA,
    2. Beijnen JH,
    3. van Tellingen O
    . High-grade glioma mouse models and their applicability for preclinical testing. Cancer Treat Rev 2009;35:714–23
    CrossRefPubMedWeb of Science
  51. 51.↵
    1. Amarasingh S,
    2. Macleod MR,
    3. Whittle LR
    . What is the translational efficacy of chemotherapeutic drug research in neuro-oncology? A systematic review and meta-analysis of the efficacy of BCNU and CCNU in animal models of glioma. J Neurooncol 2009;91:117–25. Epub 2008 Sep 24
    CrossRefPubMed
  52. 52.↵
    1. Moffat BA,
    2. Chen M,
    3. Kariaapper MS,
    4. et al
    . Inhibition of vascular endothelial growth factor (VEGF)-A causes a paradoxical increase in tumor blood flow and up-regulation of VEGF-D. Clin Cancer Res 2006;12:1525–32
    Abstract/FREE Full Text
  53. 53.↵
    1. Mathieu V,
    2. De Nève N,
    3. Le Mercier M,
    4. et al
    . Combining bevacizumab with temozolomide increases the antitumor efficacy of temozolomide in a human glioblastoma orthotopic xenograft model. Neoplasia 2008;10:1383–92
    PubMedWeb of Science
  54. 54.↵
    1. McConville P,
    2. Hambardzumyan D,
    3. Moody JB
    . Magnetic resonance imaging determination of tumor grade and early response to temozolomide in a genetically engineered mouse model of glioma. Clin Cancer Res 2007;13:2897–904
    Abstract/FREE Full Text
  55. 55.↵
    1. Breton E,
    2. Goetz C,
    3. Kintz J,
    4. et al
    . In vivo preclinical low-field MRI monitoring of tumor growth following a suicide-gene therapy in an orthotopic mice model of human glioblastoma. C R Biol 2010;333:220–25. Epub 2010 Jan 25.
    CrossRefPubMed
  56. 56.↵
    1. Huszthy PC,
    2. Immervoll H,
    3. Wang J
    . Cellular effects of oncolytic viral therapy on the glioblastoma microenvironment. Gene Ther 2010;17:202–16. Epub 2009 Oct 15
    CrossRefPubMed
  57. 57.↵
    1. Heckl S,
    2. Pipkorn R,
    3. Nägele T,
    4. et al
    . Molecular imaging: bridging the gap between neuroradiology and neurohistology. Histol Histopathol 2004;19:651–68
    PubMedWeb of Science
  58. 58.↵
    1. de Backer ME,
    2. Nabuurs RJ,
    3. van Buchem MA,
    4. et al
    . MR-based molecular imaging of the brain: the next frontier. AJNR Am J Neuroradiol 2010;31:1577–83. Epub 2010 Sep 23
    Abstract/FREE Full Text
  59. 59.↵
    1. Jacobs AH,
    2. Dittmar C,
    3. Winkeler A,
    4. et al
    . Molecular imaging of gliomas. Mol Imaging 2002;1:309–35
    CrossRefPubMed
  60. 60.↵
    1. Chirasani SR,
    2. Markovic DS,
    3. Synowitz M,
    4. et al
    . Transferrin-receptor-mediated iron accumulation controls proliferation and glutamate release in glioma cells. J Mol Med (Berl) 2009;87:153–67. Epub 2008 Dec 9
    CrossRefPubMedWeb of Science
  61. 61.↵
    1. Saxena V,
    2. Gonzalez-Gomez I,
    3. Laug WE
    . A non-invasive, in vivo technique for monitoring vascular status of glioblastoma during angiogenesis. Technol Cancer Res Treat 2007;6:641–50
    Abstract/FREE Full Text
  62. 62.↵
    1. Griffin JL,
    2. Kauppinen RA
    . Tumour metabolomics in animal models of human cancer. J Proteome Res 2007;6:498–505
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 33 (1)
American Journal of Neuroradiology
Vol. 33, Issue 1
1 Jan 2012
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
MR Imaging Features of High-Grade Gliomas in Murine Models: How They Compare with Human Disease, Reflect Tumor Biology, and Play a Role in Preclinical Trials
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
A.R. Borges, P. Lopez-Larrubia, J.B. Marques, S.G. Cerdan
MR Imaging Features of High-Grade Gliomas in Murine Models: How They Compare with Human Disease, Reflect Tumor Biology, and Play a Role in Preclinical Trials
American Journal of Neuroradiology Jan 2012, 33 (1) 24-36; DOI: 10.3174/ajnr.A2959

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
MR Imaging Features of High-Grade Gliomas in Murine Models: How They Compare with Human Disease, Reflect Tumor Biology, and Play a Role in Preclinical Trials
A.R. Borges, P. Lopez-Larrubia, J.B. Marques, S.G. Cerdan
American Journal of Neuroradiology Jan 2012, 33 (1) 24-36; DOI: 10.3174/ajnr.A2959
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Outlook
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Hot Topics in Research: Preventive Neuroradiology in Brain Aging and Cognitive Decline
  • Evidence Levels for Neuroradiology Articles: Low Agreement among Raters
  • Imaging Biomarkers in Ischemic Stroke Clinical Trials: An Opportunity for Rigor
Show more Research Perspectives

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire