Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleNeurointervention
Open Access

Hemodynamics and Anatomy of Elastase-Induced Rabbit Aneurysm Models: Similarity to Human Cerebral Aneurysms?

Z. Zeng, D.F. Kallmes, M.J. Durka, Y. Ding, D. Lewis, R. Kadirvel and A.M. Robertson
American Journal of Neuroradiology March 2011, 32 (3) 595-601; DOI: https://doi.org/10.3174/ajnr.A2324
Z. Zeng
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D.F. Kallmes
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M.J. Durka
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Y. Ding
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D. Lewis
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R. Kadirvel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A.M. Robertson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Burleson AC,
    2. Turitto VT
    . Identification of quantifiable hemodynamic factors in the assessment of cerebral aneurysm behavior: on behalf of the Subcommittee on Biorheology of the Scientific and Standardization Committee of the ISTH. Thromb Haemost 1996;76:118–23
    PubMed
  2. 2.↵
    1. Cebral JR,
    2. Castro MA,
    3. Burgess JE,
    4. et al
    . Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models. AJNR Am J Neuroradiol 2005;26:2550–59
    Abstract/FREE Full Text
  3. 3.↵
    1. Hassan T,
    2. Timofeev EV,
    3. Saito T,
    4. et al
    . A proposed parent vessel geometry-based categorization of saccular intracranial aneurysms: computational flow dynamics analysis of the risk factors for lesion rupture. J Neurosurg 2005;103:662–80
    PubMedWeb of Science
  4. 4.↵
    1. Jou LD,
    2. Lee DH,
    3. Morsi H,
    4. et al
    . Wall shear stress on ruptured and unruptured intracranial aneurysms at the internal carotid artery. AJNR Am J Neuroradiol 2008;29:1761–67
    Abstract/FREE Full Text
  5. 5.↵
    1. Shojima M,
    2. Oshima M,
    3. Takagi K,
    4. et al
    . Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms. Stroke 2004;35:2500–05
    Abstract/FREE Full Text
  6. 6.↵
    1. Shojima M,
    2. Oshima M,
    3. Takagi K,
    4. et al
    . Role of the bloodstream impacting force and the local pressure elevation in the rupture of cerebral aneurysms. Stroke 2005;36:1933–38
    Abstract/FREE Full Text
  7. 7.↵
    1. Steinman DA,
    2. Milner JS,
    3. Norley CJ,
    4. et al
    . Image-based computational simulation of flow dynamics in a giant intracranial aneurysm. AJNR Am J Neuroradiol 2003;24:559–66
    Abstract/FREE Full Text
  8. 8.↵
    1. Karmonik C,
    2. Yen C,
    3. Diaz O,
    4. et al
    . Temporal variations of wall shear stress parameters in intracranial aneurysms: importance of patient-specific inflow waveforms for CFD calculations. Acta Neurochir (Wien) 2010;152:1391–98, discussion 1398
    CrossRefPubMedWeb of Science
  9. 9.↵
    1. Parlea L,
    2. Fahrig R,
    3. Holdsworth DW,
    4. et al
    . An analysis of the geometry of saccular intracranial aneurysms. AJNR Am J Neuroradiol 1999;20:1079–89
    Abstract/FREE Full Text
  10. 10.↵
    1. Raghavan ML,
    2. Ma B,
    3. Harbaugh RE
    . Quantified aneurysm shape and rupture risk. J Neurosurg 2005;102:355–62
    CrossRefPubMedWeb of Science
  11. 11.↵
    1. Ujiie H,
    2. Tamano Y,
    3. Sasaki K,
    4. et al
    . Is the aspect ratio a reliable index for predicting the rupture of a saccular aneurysm? Neurosurgery 2001;48:495–502, discussion 502–03
    CrossRefPubMedWeb of Science
  12. 12.↵
    1. Weir B,
    2. Amidei C,
    3. Kongable G,
    4. et al
    . The aspect ratio (dome/neck) of ruptured and unruptured aneurysms. J Neurosurg 2003;99:447–51
    CrossRefPubMedWeb of Science
  13. 13.↵
    1. Avolio A,
    2. Avolio A,
    3. Farnoush A,
    4. et al
    . Hemodynamic models of cerebral aneurysms for assessment of effect of vessel geometry on risk of rupture. Conf Proc IEEE Eng Med Biol Soc 2009;2009:2351–53
    PubMed
  14. 14.↵
    1. Piccinelli M,
    2. Veneziani A,
    3. Steinman DA,
    4. et al
    . A framework for geometric analysis of vascular structures: application to cerebral aneurysms. IEEE Trans Med Imaging 2009;28:1141–55
    CrossRefPubMedWeb of Science
  15. 15.↵
    1. Ingebrigtsen T,
    2. Morgan MK,
    3. Faulder K,
    4. et al
    . Bifurcation geometry and the presence of cerebral artery aneurysms. J Neurosurg 2004;101:108–13
    CrossRefPubMed
  16. 16.↵
    1. Frosen J,
    2. Piippo A,
    3. Paetau A,
    4. et al
    . Remodeling of saccular cerebral artery aneurysm wall is associated with rupture: histological analysis of 24 unruptured and 42 ruptured cases. Stroke 2004;35:2287–93
    Abstract/FREE Full Text
  17. 17.↵
    1. Sequeira A,
    2. Rannacher R
    1. Zeng Z,
    2. Chung BJ,
    3. Durka M,
    4. et al
    . An in-vitro device for evaluation of cellular response to flows found at the apex of arterial bifurcations. In: Sequeira A, Rannacher R eds. Advances in Mathematical Fluid Mechanics. Heidelberg, Germany: Springer-Verlag, Wien; 2010:631–57
  18. 18.↵
    1. Sakamoto N,
    2. Ohashi T,
    3. Sato M
    . Effect of fluid shear stress on migration of vascular smooth muscle cells in cocultured model. Ann Biomed Eng 2006;34:408–15. Epub 2006 Feb 16
    CrossRefPubMedWeb of Science
  19. 19.↵
    1. Altes TA,
    2. Cloft HJ,
    3. Short JG,
    4. et al
    . 1999 ARRS Executive Council Award: creation of saccular aneurysms in the rabbit—a model suitable for testing endovascular devices. American Roentgen Ray Society. AJR Am J Roentgenol 2000;174:349–54
    CrossRefPubMedWeb of Science
  20. 20.↵
    1. Fukuda S,
    2. Hashimoto N,
    3. Naritomi H,
    4. et al
    . Prevention of rat cerebral aneurysm formation by inhibition of nitric oxide synthase. Circulation 2000;101:2532–38
    Abstract/FREE Full Text
  21. 21.↵
    1. Kondo S,
    2. Hashimoto N,
    3. Kikuchi H,
    4. et al
    . Cerebral aneurysms arising at nonbranching sites: an experimental study. Stroke 1997;28:398–403, discussion 403–04
    Abstract/FREE Full Text
  22. 22.↵
    1. Thiex R,
    2. Moller-Hartmann W,
    3. Hans FJ,
    4. et al
    . Are the configuration and neck morphology of experimental aneurysms predictable? A technical approach. Neuroradiology 2004;46:571–76
    PubMed
  23. 23.↵
    1. Kallmes DF,
    2. Ding YH,
    3. Dai D,
    4. et al
    . A new endoluminal, flow-disrupting device for treatment of saccular aneurysms. Stroke 2007;38:2346–52
    Abstract/FREE Full Text
  24. 24.↵
    1. Sadasivan C,
    2. Cesar L,
    3. Seong J,
    4. et al
    . An original flow-diversion device for the treatment of intracranial aneurysms: evaluation in the rabbit elastase-induced model. Stroke 2009;40:952–58
    Abstract/FREE Full Text
  25. 25.↵
    1. Ding YH,
    2. Danielson MA,
    3. Kadirvel R,
    4. et al
    . Modified technique to create morphologically reproducible elastase-induced aneurysms in rabbits. Neuroradiology 2006;48:528–32
    CrossRefPubMed
  26. 26.↵
    1. Ding YH,
    2. Dai D,
    3. Lewis DA,
    4. et al
    . Can neck size in elastase-induced aneurysms be controlled? A prospective study. AJNR Am J Neuroradiol 2005;26:2364–67
    Abstract/FREE Full Text
  27. 27.↵
    1. Ding YH,
    2. Dai D,
    3. Lewis DA,
    4. et al
    . Can neck size in elastase-induced aneurysms be controlled? A retrospective study. AJNR Am J Neuroradiol 2006;27:1681–84
    Abstract/FREE Full Text
  28. 28.↵
    1. Ujiie H,
    2. Tachibana H,
    3. Hiramatsu O,
    4. et al
    . Effects of size and shape (aspect ratio) on the hemodynamics of saccular aneurysms: a possible index for surgical treatment of intracranial aneurysms. Neurosurgery 1999;45:119–29, discussion 129–30
    CrossRefPubMedWeb of Science
  29. 29.↵
    1. Ebina K,
    2. Shimizu T,
    3. Sohma M,
    4. et al
    . Clinico-statistical study on morphological risk factors of middle cerebral artery aneurysms. Acta Neurochir (Wien) 1990;106:153–59
    CrossRefPubMed
  30. 30.↵
    1. Zeng Z,
    2. Kallmes DF,
    3. Durka M,
    4. et al
    . Sensitivity of CFD based hemodynamic results in rabbit aneurysm models to idealizations in surrounding vasculature. J Biomech Eng 2010;132:091009
    CrossRefPubMed
  31. 31.↵
    1. Heywood JG,
    2. Rannacher R,
    3. Turek S
    . Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations. International Journal for Numerical Methods in Fluids 1996;22:325–52
    CrossRef
  32. 32.↵
    1. He X,
    2. Ku DN
    . Pulsatile flow in the human left coronary artery bifurcation: average conditions. J Biomech Eng 1996;118:74–82
    CrossRefPubMedWeb of Science
  33. 33.
    1. Hendrikse J,
    2. van Raamt AF,
    3. van der Graaf Y,
    4. et al
    . Distribution of cerebral blood flow in the circle of Willis. Radiology 2005;235:184–89
    CrossRefPubMedWeb of Science
  34. 34.
    1. Zhao M,
    2. Amin-Hanjani S,
    3. Ruland S,
    4. et al
    . Regional cerebral blood flow using quantitative MR angiography. AJNR Am J Neuroradiol 2007;28:1470–73
    Abstract/FREE Full Text
  35. 35.
    1. Vriens EM,
    2. Wieneke GH,
    3. Hillen B,
    4. et al
    . Flow redistribution in the major cerebral arteries after carotid endarterectomy: a study with transcranial Doppler scan. J Vasc Surg 2001;33:139–47
    CrossRefPubMed
  36. 36.↵
    1. Mantha A,
    2. Karmonik C,
    3. Benndorf G,
    4. et al
    . Hemodynamics in a cerebral artery before and after the formation of an aneurysm. AJNR Am J Neuroradiol 2006;27:1113–18
    Abstract/FREE Full Text
  37. 37.↵
    1. Hoi Y,
    2. Meng H,
    3. Woodward SH,
    4. et al
    . Effects of arterial geometry on aneurysm growth: three-dimensional computational fluid dynamics study. J Neurosurg 2004;101:676–81
    CrossRefPubMedWeb of Science
  38. 38.↵
    1. Yilmaz C,
    2. Utebay B,
    3. Kalaycioglu S,
    4. et al
    . Non-visualization of the internal carotid artery with a normal ipsilateral common carotid artery Doppler waveform: a finding suggesting congenital absence of the ICA on colour Doppler ultrasound. Br J Radiol 2006;79:108–11
    CrossRef
  39. 39.↵
    1. Short JG,
    2. Fujiwara NH,
    3. Marx WF,
    4. et al
    . Elastase-induced saccular aneurysms in rabbits: comparison of geometric features with those of human aneurysms. AJNR Am J Neuroradiol 2001;22:1833–37
    Abstract/FREE Full Text
  40. 40.↵
    1. Kadirvel R,
    2. Ding Y-H,
    3. Dai D,
    4. et al
    . The influence of hemodynamic forces on biomarkers in the walls of elastase-induced aneurysms in rabbits. Neuroradiology 2007;49:1041–53
    CrossRefPubMedWeb of Science
  41. 41.↵
    1. Karmonik C,
    2. Klucznik R,
    3. Benndorf G
    . Blood flow in cerebral aneurysms: comparison of phase contrast magnetic resonance and computational fluid dynamics—preliminary experience. Rofo 2008;180:209–15
    PubMedWeb of Science
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 32 (3)
American Journal of Neuroradiology
Vol. 32, Issue 3
1 Mar 2011
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Hemodynamics and Anatomy of Elastase-Induced Rabbit Aneurysm Models: Similarity to Human Cerebral Aneurysms?
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Z. Zeng, D.F. Kallmes, M.J. Durka, Y. Ding, D. Lewis, R. Kadirvel, A.M. Robertson
Hemodynamics and Anatomy of Elastase-Induced Rabbit Aneurysm Models: Similarity to Human Cerebral Aneurysms?
American Journal of Neuroradiology Mar 2011, 32 (3) 595-601; DOI: 10.3174/ajnr.A2324

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Hemodynamics and Anatomy of Elastase-Induced Rabbit Aneurysm Models: Similarity to Human Cerebral Aneurysms?
Z. Zeng, D.F. Kallmes, M.J. Durka, Y. Ding, D. Lewis, R. Kadirvel, A.M. Robertson
American Journal of Neuroradiology Mar 2011, 32 (3) 595-601; DOI: 10.3174/ajnr.A2324
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • Abbreviations
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Rabbit Elastase Aneurysm Model Mimics the Recurrence Rate of Human Intracranial Aneurysms following Platinum Coil Embolization
  • Endothelialized silicone aneurysm models for in vitro evaluation of flow diverters
  • In situ decellularization of a large animal saccular aneurysm model: sustained inflammation and active aneurysm wall remodeling
  • Preclinical safety and efficacy evaluation of the Pipeline Vantage Embolization Device with Shield Technology
  • Quantitative and Qualitative Comparison of 4D-DSA with 3D-DSA Using Computational Fluid Dynamics Simulations in Cerebral Aneurysms
  • Assessment of endothelialization of aneurysm wall over time in a rabbit model through CD31 scoring
  • Rabbit aneurysm models mimic histologic wall types identified in human intracranial aneurysms
  • From bench to bedside: utility of the rabbit elastase aneurysm model in preclinical studies of intracranial aneurysm treatment
  • Gene expression comparison of flow diversion and coiling in an experimental aneurysm model
  • MR Imaging of Myeloperoxidase Activity in a Model of the Inflamed Aneurysm Wall
  • Geometric, Hemodynamic, and Pathological Study of a Distal Internal Carotid Artery Aneurysm Model in Dogs
  • Analysis and quantification of endovascular coil distribution inside saccular aneurysms using histological images
  • Elastase-Induced Rabbit Aneurysms Model Complicated by Thoracic Aortic Aneurysms
  • Crossref (38)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Morphological and Hemodynamic Analysis of Mirror Posterior Communicating Artery Aneurysms
    Jinyu Xu, Ying Yu, Xi Wu, Yongfa Wu, Che Jiang, Shengzhang Wang, Qinghai Huang, Jianmin Liu, Jean-Claude Baron
    PLoS ONE 2013 8 1
  • Factors affecting formation and rupture of intracranial saccular aneurysms
    S. Bacigaluppi, M. Piccinelli, L. Antiga, A. Veneziani, T. Passerini, P. Rampini, M. Zavanone, P. Severi, G. Tredici, G. Zona, T. Krings, E. Boccardi, S. Penco, M. Fontanella
    Neurosurgical Review 2014 37 1
  • Investigating the Influence of Haemodynamic Stimuli on Intracranial Aneurysm Inception
    Haoyu Chen, Alisa Selimovic, Harry Thompson, Alessandro Chiarini, Justin Penrose, Yiannis Ventikos, Paul N. Watton
    Annals of Biomedical Engineering 2013 41 7
  • From bench to bedside: utility of the rabbit elastase aneurysm model in preclinical studies of intracranial aneurysm treatment
    Waleed Brinjikji, Yong H Ding, David F Kallmes, Ramanathan Kadirvel
    Journal of NeuroInterventional Surgery 2016 8 5
  • Transport in Biological Media
    Anne M. Robertson, Paul N. Watton
    2013
  • Preclinical safety and efficacy evaluation of the Pipeline Vantage Embolization Device with Shield Technology
    Robert M Starke, John Thompson, Ariana Pagani, Animesh Choubey, John M Wainwright, Michael F Wolf, Reza Jahanbekam, Gaurav Girdhar
    Journal of NeuroInterventional Surgery 2020 12 10
  • Measurement of quantifiable parameters by time-density curves in the elastase-induced aneurysm model: first results in the comparison of a flow diverter and a conventional aneurysm stent
    Tobias Struffert, Sabine Ott, Markus Kowarschik, Frederik Bender, Edyta Adamek, Tobias Engelhorn, Philipp Gölitz, Stefan Lang, Charles M. Strother, Arnd Doerfler
    European Radiology 2013 23 2
  • Imaging Modalities for Intracranial Aneurysm: More Than Meets the Eye
    Clémence Maupu, Héloïse Lebas, Yacine Boulaftali
    Frontiers in Cardiovascular Medicine 2022 9
  • Gene expression comparison of flow diversion and coiling in an experimental aneurysm model
    Cole Puffer, Daying Dai, Yong-Hong Ding, Juan Cebral, David Kallmes, Ramanathan Kadirvel
    Journal of NeuroInterventional Surgery 2015 7 12
  • Preclinical extracranial aneurysm models for the study and treatment of brain aneurysms: A systematic review
    Serge Marbacher, Fabio Strange, Juhana Frösén, Javier Fandino
    Journal of Cerebral Blood Flow & Metabolism 2020 40 5

More in this TOC Section

  • Effect of SARS-CoV2 on Endovascular Thrombectomy
  • Flow diversion for distal circulation aneurysms
  • Neuroform Atlas Stent for Intracranial Aneurysms
Show more NEUROINTERVENTION

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire