Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • Advancing NeuroMRI with High-Relaxivity Contrast Agents
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • Advancing NeuroMRI with High-Relaxivity Contrast Agents
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates


Improved Turnaround Times | Median time to first decision: 12 days

Research ArticleBrain
Open Access

A Sparse Intraoperative Data-Driven Biomechanical Model to Compensate for Brain Shift during Neuronavigation

D.-X Zhuang, Y.-X Liu, J.-S Wu, C.-J Yao, Y Mao, C.-X Zhang, M.-N Wang, W Wang and L.-F Zhou
American Journal of Neuroradiology February 2011, 32 (2) 395-402; DOI: https://doi.org/10.3174/ajnr.A2288
D.-X Zhuang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Y.-X Liu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.-S Wu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C.-J Yao
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Y Mao
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C.-X Zhang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M.-N Wang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W Wang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L.-F Zhou
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Roberts DW,
    2. Hartov A,
    3. Kennedy FE,
    4. et al
    . Intraoperative brain shift and deformation: a quantitative analysis of cortical displacement in 28 cases. Neurosurgery 1998;43:749–60
    CrossRefPubMed
  2. 2.↵
    1. Hill DL,
    2. Maurer CR Jr.,
    3. Maciunas RJ,
    4. et al
    . Measurement of intraoperative brain surface deformation under a craniotomy. Neurosurgery 1998;43:514–28
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Dorward NL,
    2. Alberti O,
    3. Velani B,
    4. et al
    . Postimaging brain distortion: magnitude, correlates, and impact on neuronavigation. J Neurosurg 1998;88:656–62
    PubMed
  4. 4.↵
    1. Du GH,
    2. Zhou LF,
    3. Mao Y,
    4. et al
    . Intraoperative brain shift in neuronavigator-guided surgery. Chin J Minim Invasive Neurosurg 2002;7:3–6
  5. 5.↵
    1. Gumprecht H,
    2. Lumenta CB
    . Intraoperative imaging using a mobile computed tomography scanner. Minim Invasive Neurosurg 2003;46:317–22
    CrossRefPubMedWeb of Science
  6. 6.↵
    1. Nakao N,
    2. Nakai K,
    3. Itakura T
    . Updating of neuronavigation based on images intraoperatively acquired with a mobile computerized tomographic scanner: technical note. Minim Invasive Neurosurg 2003;46:117–20
    CrossRefPubMed
  7. 7.↵
    1. Trobaugh JW,
    2. Richard WD,
    3. Smith KR,
    4. et al
    . Frameless stereotactic ultrasonography: method and applications. Comput Med Imaging Graph 1994;18:235–46
    CrossRefPubMed
  8. 8.↵
    1. Jodicke A,
    2. Deinsberger W,
    3. Erbe H,
    4. et al
    . Intraoperative three-dimensional ultrasonography: an approach to register brain shift using multidimensional image processing. Minim Invasive Neurosurg 1998;:41:13–19
    PubMed
  9. 9.↵
    1. Comeau RM,
    2. Fenster A,
    3. Peters TM
    . Intraoperative US in interactive image-guided neurosurgery. Radiographics 1998;18:1019–27
    PubMed
  10. 10.↵
    1. Unsgaard G,
    2. Ommedal S,
    3. Muller T,
    4. et al
    . Neuronavigation by intraoperative three-dimensional ultrasound: initial experience during brain tumor resection. Neurosurgery 2002;50:804–12
    CrossRefPubMed
  11. 11.↵
    1. Lindseth F,
    2. Lango T,
    3. Bang J,
    4. et al
    . Accuracy evaluation of a 3D ultrasound-based neuronavigation system. Comput Aided Surg 2002;7:197–222
    CrossRefPubMed
  12. 12.↵
    1. Moriarty TM,
    2. Kikinis R,
    3. Jolesz FA,
    4. et al
    . Magnetic resonance imaging therapy: intraoperative MR imaging. Neurosurg Clin N Am 1996;7:323–31
    PubMedWeb of Science
  13. 13.↵
    1. Wirtz CR,
    2. Bonsanto MM,
    3. Knauth M,
    4. et al
    . Intraoperative magnetic resonance imaging to update interactive navigation in neurosurgery: method and preliminary experience. Comput Aided Surg 1997;2:172–79
    PubMed
  14. 14.↵
    1. Wirtz CR,
    2. Knauth M,
    3. Staubert A,
    4. et al
    . Clinical evaluation and follow-up results for intraoperative magnetic resonance imaging in neurosurgery. Neurosurgery 2000;46:1112–22
    CrossRefPubMedWeb of Science
  15. 15.↵
    1. Nimsky C,
    2. Ganslandt O,
    3. Tomandl B,
    4. et al
    . Low-field magnetic resonance imaging for intraoperative use in neurosurgery: a 5-year experience. Eur Radiol 2002;12:2690–703. Epub 2002 May 1
    PubMed
  16. 16.↵
    1. Schulder M,
    2. Carmel PW
    . Intraoperative magnetic resonance imaging: impact on brain tumor surgery. Cancer Control 2003;10:115–24
    PubMed
  17. 17.↵
    1. Nimsky C,
    2. Ganslandt O,
    3. Von Keller B,
    4. et al
    . Intraoperative high-field-strength MR imaging: implementation and experience in 200 patients. Radiology 2004;233:67–78
    PubMedWeb of Science
  18. 18.↵
    1. Wu JS,
    2. Shou XF,
    3. Zhou LF,
    4. et al
    . Transsphenoidal pituitary macroadenomas resection guided by PoleStar N20 low-field intraoperative magnetic resonance imaging: comparison with early postoperative high-field magnetic resonance imaging. Neurosurgery 2009;65:63–71
    CrossRefPubMed
  19. 19.↵
    1. Miga MI,
    2. Paulsen KD,
    3. Hoopes PJ,
    4. et al
    . In vivo quantification of a homogeneous brain deformation model for updating preoperative images during surgery. IEEE Trans Biomed Eng 2000;47:266–73
    CrossRefPubMedWeb of Science
  20. 20.↵
    1. Miga MI,
    2. Paulsen KD,
    3. Lemery JM,
    4. et al
    . Model-updated image guidance: initial clinical experiences with gravity-induced brain deformation. IEEE Trans Med Imaging 1999;18:866–74
    CrossRefPubMedWeb of Science
  21. 21.↵
    1. Sun H,
    2. Lunn KE,
    3. Farid H,
    4. et al
    . Stereopsis-guided brain shift compensation. IEEE Trans Med Imaging 2005;24:1039–52
    CrossRefPubMedWeb of Science
  22. 22.↵
    1. Wittek A,
    2. Kikinis R,
    3. Warfield SK,
    4. et al
    . Brain shift computation using a fully nonlinear biomechanical model. Med Image Comput Assist Interv 2005;8(pt 2):583–90
  23. 23.↵
    1. Davatzikos C,
    2. Shen D,
    3. Mohamed A,
    4. et al
    . Framework for predictive modeling of anatomical deformations. IEEE Trans Med Imaging 2001;20:836–43
    CrossRefPubMed
  24. 24.↵
    1. Lunn KE,
    2. Paulsen KD,
    3. Roberts DW,
    4. et al
    . Nonrigid brain registration: synthesizing full volume deformation fields from model basis solutions constrained by partial volume intraoperative data. Comput Vis Image Underst 2003;89:299–317
    CrossRef
  25. 25.↵
    1. Skrinjar O,
    2. Nabavi A,
    3. Duncan J
    . Model-driven brain shift compensation. Med Image Anal 2002;6:361–73
    CrossRefPubMed
  26. 26.↵
    1. Skrinjar O,
    2. Duncan J
    . Stereo-guided volumetric deformation recovery. In: Proceedings of the IEEE International Symposium of Biomedical Imaging, Washington, DC. 7 7–10, 2002:863–66
  27. 27.↵
    1. Ferrant M,
    2. Nabavi A,
    3. Macq B,
    4. et al
    . Registration of 3-D intraoperative MR images of the brain using a finite-element biomechanical model. IEEE Trans Med Imaging 2001;20:1384–97
    CrossRefPubMed
  28. 28.↵
    1. Ferrant M,
    2. Nabavi A,
    3. Macq B,
    4. et al
    . Serial registration of intraoperative MR images of the brain. Med Image Anal 2002;6:337–59
    CrossRefPubMed
  29. 29.↵
    1. Cash DM,
    2. Miga MI,
    3. Sinha TK,
    4. et al
    . Compensating for intraoperative soft-tissue deformations using incomplete surface data and finite elements. IEEE Trans Med Imaging 2005;24:1479–91
    CrossRefPubMedWeb of Science
  30. 30.↵
    1. Liu YX,
    2. Song ZJ
    . A robust brain deformation framework based on a finite element model in IGNS. Int J Med Robot 2008;4:146–57
    PubMed
  31. 31.↵
    1. DeLorenzo C,
    2. Papademetris X,
    3. Vives KP,
    4. et al
    . A comprehensive system for intraoperative 3D brain deformation recovery. Med Image Comput Comput Assist Interv 2007;10(pt 2):553–61
    PubMed
  32. 32.↵
    1. Paulsen KD,
    2. Miga MI,
    3. Kennedy FE,
    4. et al
    . A computational model for tracking subsurface tissue deformation during stereotactic neurosurgery. IEEE Trans Biomed Eng 1999;46:213–25
    CrossRefPubMed
  33. 33.↵
    1. Lunn KE,
    2. Paulsen KD,
    3. Lynch DR,
    4. et al
    . Assimilating intraoperative data with brain shift modeling using the adjoint equations. Med Image Anal 2005;9:281–93
    CrossRefPubMedWeb of Science
  34. 34.↵
    1. Malladi R,
    2. Sethian JA,
    3. Vemuri BC
    . Shape modeling with front propagation, a level set approach. IEEE Trans Pattern Anal Mach Intell 1995;17:158–75
    CrossRef
  35. 35.↵
    1. Chui HL,
    2. Rangarajan A
    . A new point matching algorithm for non-rigid registration. Comput Vis Image Underst 2003;89:114–41
    CrossRef
  36. 36.↵
    1. Rueckert D,
    2. Sonoda LI,
    3. Hayes C,
    4. et al
    . Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans Med Imaging 1999;18:712–21
    CrossRefPubMedWeb of Science
  37. 37.↵
    1. Biot MA
    . General theory of three-dimensional consolidation. J Appl Phys 1941;12:155–64
    CrossRefWeb of Science
  38. 38.↵
    1. Miller K,
    2. Chinzei K
    . Mechanical properties of brain tissue in tension. J Biomech 2002;35:483–90
    CrossRefPubMedWeb of Science
  39. 39.↵
    PETSc. Portable, Extensible Toolkit for Scientific Computation. http://www.mcs.anl.gov/petsc. Accessed November 2, 2010
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 32 (2)
American Journal of Neuroradiology
Vol. 32, Issue 2
1 Feb 2011
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
A Sparse Intraoperative Data-Driven Biomechanical Model to Compensate for Brain Shift during Neuronavigation
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
D.-X Zhuang, Y.-X Liu, J.-S Wu, C.-J Yao, Y Mao, C.-X Zhang, M.-N Wang, W Wang, L.-F Zhou
A Sparse Intraoperative Data-Driven Biomechanical Model to Compensate for Brain Shift during Neuronavigation
American Journal of Neuroradiology Feb 2011, 32 (2) 395-402; DOI: 10.3174/ajnr.A2288

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
A Sparse Intraoperative Data-Driven Biomechanical Model to Compensate for Brain Shift during Neuronavigation
D.-X Zhuang, Y.-X Liu, J.-S Wu, C.-J Yao, Y Mao, C.-X Zhang, M.-N Wang, W Wang, L.-F Zhou
American Journal of Neuroradiology Feb 2011, 32 (2) 395-402; DOI: 10.3174/ajnr.A2288
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • Abbreviations
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Progression of Microstructural Damage in Spinocerebellar Ataxia Type 2: A Longitudinal DTI Study
  • SWI or T2*: Which MRI Sequence to Use in the Detection of Cerebral Microbleeds? The Karolinska Imaging Dementia Study
  • Statin Therapy Does Not Affect the Radiographic and Clinical Profile of Patients with TIA and Minor Stroke
Show more Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire