Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleFunctional
Open Access

Tactile Sensory and Pain Networks in the Human Spinal Cord and Brain Stem Mapped by Means of Functional MR Imaging

N.F. Ghazni, C.M. Cahill and P.W. Stroman
American Journal of Neuroradiology April 2010, 31 (4) 661-667; DOI: https://doi.org/10.3174/ajnr.A1909
N.F. Ghazni
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C.M. Cahill
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P.W. Stroman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Meyer R,
    2. Ringkamp M,
    3. Campbell J,
    4. et al
    . Peripheral Mechanisms of Cutaneous Nociception. Philadelphia: Elsevier/Churchill Livingstone; 2006
  2. 2.↵
    1. Creac’h C,
    2. Henry P,
    3. Caille JM,
    4. et al
    . Functional MR imaging analysis of pain-related brain activation after acute mechanical stimulation. AJNR Am J Neuroradiol 2000; 21: 1402–06
    Abstract/FREE Full Text
  3. 3.↵
    1. Hansson T,
    2. Brismar T
    . Tactile stimulation of the hand causes bilateral cortical activation: a functional magnetic resonance study in humans. Neurosci Lett 1999; 271: 29–32
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Blatow M,
    2. Nennig E,
    3. Durst A,
    4. et al
    . fMRI reflects functional connectivity of human somatosensory cortex. Neuroimage 2007; 37: 927–36
    CrossRefPubMedWeb of Science
  5. 5.↵
    1. Dunckley P,
    2. Wise RG,
    3. Fairhurst M,
    4. et al
    . A comparison of visceral and somatic pain processing in the human brainstem using functional magnetic resonance imaging. J Neurosci 2005; 25: 7333–41
    Abstract/FREE Full Text
  6. 6.↵
    1. Fairhurst M,
    2. Wiech K,
    3. Dunckley P,
    4. et al
    . Anticipatory brainstem activity predicts neural processing of pain in humans. Pain 2007; 128: 101–10
    CrossRefPubMedWeb of Science
  7. 7.↵
    1. Govers N,
    2. Beghin J,
    3. Van Goethem JW,
    4. et al
    . Functional MRI of the cervical spinal cord on 1.5 T with fingertapping: to what extent is it feasible? Neuroradiology 2007; 49: 73–81
    CrossRefPubMed
  8. 8.↵
    1. Madi S,
    2. Flanders AE,
    3. Vinitski S,
    4. et al
    . Functional MR imaging of the human cervical spinal cord. AJNR Am J Neuroradiol 2001; 22: 1768–74
    Abstract/FREE Full Text
  9. 9.↵
    1. Stracke CP,
    2. Pettersson LG,
    3. Schoth F,
    4. et al
    . Interneuronal systems of the cervical spinal cord assessed with BOLD imaging at 1.5 T. Neuroradiology 2005; 47: 127–33
    CrossRefPubMedWeb of Science
  10. 10.↵
    1. Yoshizawa T,
    2. Nose T,
    3. Moore GJ,
    4. et al
    . Functional magnetic resonance imaging of motor activation in the human cervical spinal cord. Neuroimage 1996; 4: 174–82
    CrossRefPubMedWeb of Science
  11. 11.↵
    1. Komisaruk BR,
    2. Mosier KM,
    3. Liu WC,
    4. et al
    . Functional localization of brainstem and cervical spinal cord nuclei in humans with fMRI. AJNR Am J Neuroradiol 2002; 23: 609–17
    Abstract/FREE Full Text
  12. 12.↵
    1. Stroman PW,
    2. Kornelsen J,
    3. Bergman A,
    4. et al
    . Noninvasive assessment of the injured human spinal cord by means of functional magnetic resonance imaging. Spinal Cord 2004; 42: 59–66
    CrossRefPubMedWeb of Science
  13. 13.↵
    1. Stroman PW,
    2. Kornelsen J,
    3. Lawrence J,
    4. et al
    . Functional magnetic resonance imaging based on SEEP contrast: response function and anatomical specificity. Magn Reson Imaging 2005; 23: 843–50
    CrossRefPubMed
  14. 14.↵
    1. Stroman PW,
    2. Krause V,
    3. Malisza KL,
    4. et al
    . Characterization of contrast changes in functional MRI of the human spinal cord at 1.5 T. Magn Reson Imaging 2001; 19: 833–38
    CrossRefPubMedWeb of Science
  15. 15.↵
    1. Stroman PW
    . Magnetic resonance imaging of neuronal function in the spinal cord: spinal FMRI. Clin Med Res 2005; 3: 146–56
    Abstract/FREE Full Text
  16. 16.↵
    1. Agosta F,
    2. Valsasina P,
    3. Caputo D,
    4. et al
    . Tactile-associated fMRI recruitment of the cervical cord in healthy subjects. Hum Brain Mapp 2009; 30: 340–45
    CrossRefPubMedWeb of Science
  17. 17.↵
    1. Stroman PW
    . Discrimination of errors from neuronal activity in functional MRI of the human spinal cord by means of general linear model analysis. Magn Reson Med 2006; 56: 452–56
    CrossRefPubMedWeb of Science
  18. 18.↵
    1. Stroman PW,
    2. Kornelsen J,
    3. Lawrence J
    . An improved method for spinal functional MRI with large volume coverage of the spinal cord. J Magn Reson Imaging 2005; 21: 520–26
    CrossRefPubMedWeb of Science
  19. 19.↵
    1. Stroman PW,
    2. Tomanek B,
    3. Krause V,
    4. et al
    . Mapping of neuronal function in the healthy and injured human spinal cord with spinal fMRI. Neuroimage 2002; 17: 1854–60
    CrossRefPubMedWeb of Science
  20. 20.↵
    1. Field MJ,
    2. Bramwell S,
    3. Hughes J,
    4. et al
    . Detection of static and dynamic components of mechanical allodynia in rat models of neuropathic pain: are they signalled by distinct primary sensory neurones? Pain 1999; 83: 303–11
    CrossRefPubMedWeb of Science
  21. 21.↵
    1. Rainville P,
    2. Feine JS,
    3. Bushnell MC,
    4. et al
    . A psychophysical comparison of sensory and affective responses to four modalities of experimental pain. Somatosens Mot Res 1992; 9: 265–77
    PubMedWeb of Science
  22. 22.↵
    1. Stroman PW,
    2. Figley CR,
    3. Cahill CM
    . Spatial normalization, bulk motion correction and coregistration for functional magnetic resonance imaging of the human cervical spinal cord and brainstem. Magn Reson Imaging 2008; 26: 809–14
    CrossRefPubMed
  23. 23.↵
    1. Figley CR,
    2. Stroman PW
    . Investigation of human cervical and upper thoracic spinal cord motion: implications for imaging spinal cord structure and function. Magn Reson Med 2007; 58: 185–89
    CrossRefPubMed
  24. 24.↵
    1. McGonigle DJ,
    2. Howseman AM,
    3. Athwal BS,
    4. et al
    . Variability in fMRI: an examination of intersession differences. Neuroimage 2000; 11: 708–34
    CrossRefPubMedWeb of Science
  25. 25.↵
    1. Friston KJ,
    2. Ashburner JT,
    3. Kiebel SJ
    . Random Effects Analysis. London: Academic Press; 2007
  26. 26.↵
    1. DeArmond SJ,
    2. Dewey MM,
    3. Fusco MM
    . Structure of the Human Brain: A Photographic Atlas. New York: Oxford University Press; 1974
  27. 27.↵
    1. Tamraz JC,
    2. Comair YG
    . The brainstem and cerebellum. In: Atlas of Regional Anatomy of the Brain using MRI. New York: Springer; 2006: 227–55
  28. 28.↵
    1. Kimberley TJ,
    2. Lewis SM
    . Understanding neuroimaging. Phys Ther 2007; 87: 670–83
    Abstract/FREE Full Text
  29. 29.↵
    1. Leitch J,
    2. Cahill CM,
    3. Ghazni N,
    4. et al
    . Spinal cord and brainstem activation in carpal tunnel syndrome patients in response to noxious stimuli: a spinal fMRI study. Proceedings of the International Society for Magnetic Resonance in Medicine 17th Annual Meeting, April 18–24, 2009; Honolulu, Hawaii
  30. 30.↵
    1. Stroman PW
    . Spinal fMRI investigation of human spinal cord function over a range of innocuous thermal sensory stimuli and study-related emotional influences. Magn Reson Imaging 2009; 10: 1333–46
  31. 31.↵
    1. Ochoa JL,
    2. Yarnitsky D
    . Mechanical hyperalgesias in neuropathic pain patients: dynamic and static subtypes. Ann Neurol 1993; 33: 465–72
    CrossRefPubMedWeb of Science
  32. 32.↵
    1. Yezierski RP,
    2. Wilcox TK,
    3. Willis WD
    . The effects of serotonin antagonists on the inhibition of primate spinothalamic tract cells produced by stimulation in nucleus raphe magnus or periaqueductal gray. J Pharmacol Exp Ther 1982; 220: 266–77
    Abstract/FREE Full Text
  33. 33.↵
    1. Besson JM
    . The neurobiology of pain. Lancet 1999; 353: 1610–15
    CrossRefPubMedWeb of Science
  34. 34.↵
    1. Willis WD,
    2. Westlund KN
    . Neuroanatomy of the pain system and of the pathways that modulate pain. J Clin Neurophysiol 1997; 14: 2–31
    PubMedWeb of Science
  35. 35.↵
    1. Gardner E,
    2. Marin J,
    3. Jessel T
    . The Bodily Senses. New York: McGraw-Hill; 2000
  36. 36.↵
    1. Kennedy PR
    . Corticospinal, rubrospinal and rubro-olivary projections: a unifying hypothesis. Trends Neurosci 1990; 13: 474–79
    CrossRefPubMedWeb of Science
  37. 37.↵
    1. Baumeister AA,
    2. Anticich TG,
    3. Hawkins MF,
    4. et al
    . Evidence that the substantia nigra is a component of the endogenous pain suppression system in the rat. Brain Res 1988; 447: 116–21
    CrossRefPubMedWeb of Science
  38. 38.↵
    1. Sotres-Bayon F,
    2. Torres-Lopez E,
    3. Lopez-Avila A,
    4. et al
    . Lesion and electrical stimulation of the ventral tegmental area modify persistent nociceptive behavior in the rat. Brain Res 2001; 898: 342–49
    CrossRefPubMed
  39. 39.↵
    1. Fields HL,
    2. Basbaum AI,
    3. Heinricher MM
    . Central Nervous System Mechanisms of Pain Modulation. Philadelphia: Elsevier/Churchill Livingstone; 2006
  40. 40.↵
    1. Monhemius R,
    2. Green DL,
    3. Roberts MH,
    4. et al
    . Periaqueductal grey mediated inhibition of responses to noxious stimulation is dynamically activated in a rat model of neuropathic pain. Neurosci Lett 2001; 298: 70–74
    CrossRefPubMedWeb of Science
  41. 41.↵
    1. Sillery E,
    2. Bittar RG,
    3. Robson MD,
    4. et al
    . Connectivity of the human periventricular-periaqueductal gray region. J Neurosurg 2005; 103: 1030–34
    PubMedWeb of Science
  42. 42.↵
    1. Waters AJ,
    2. Lumb BM
    . Descending control of spinal nociception from the periaqueductal grey distinguishes between neurons with and without C-fibre inputs. Pain 2008; 134: 32–40
    CrossRefPubMedWeb of Science
  43. 43.↵
    1. Logothetis NK,
    2. Pauls J,
    3. Augath M,
    4. et al
    . Neurophysiological investigation of the basis of the fMRI signal. Nature 2001; 412: 150–57
    CrossRefPubMed
  44. 44.↵
    1. Menon RS,
    2. Ogawa S,
    3. Kim SG,
    4. et al
    . Functional brain mapping using magnetic resonance imaging: signal changes accompanying visual stimulation. Invest Radiol 1992; 27 (suppl 2): S47–53
    CrossRefPubMedWeb of Science
  45. 45.↵
    1. Ogawa S,
    2. Tank DW,
    3. Menon R,
    4. et al
    . Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A 1992; 89: 5951–55
    Abstract/FREE Full Text
  46. 46.↵
    1. McKiernan KA,
    2. Kaufman JN,
    3. Kucera-Thompson J,
    4. et al
    . A parametric manipulation of factors affecting task-induced deactivation in functional neuroimaging. J Cogn Neurosci 2003; 15: 394–408
    CrossRefPubMedWeb of Science
  47. 47.↵
    1. Liu WC,
    2. Feldman SC,
    3. Cook DB,
    4. et al
    . fMRI study of acupuncture-induced periaqueductal gray activity in humans. Neuroreport 2004; 15: 1937–40
    CrossRefPubMedWeb of Science
  48. 48.↵
    1. Maihofner C,
    2. Neundorfer B,
    3. Stefan H,
    4. et al
    . Cortical processing of brush-evoked allodynia. Neuroreport 2003; 14: 785–89
    CrossRefPubMed
  49. 49.↵
    1. Schweinhardt P,
    2. Glynn C,
    3. Brooks J,
    4. et al
    . An fMRI study of cerebral processing of brush-evoked allodynia in neuropathic pain patients. Neuroimage 2006; 32: 256–65
    CrossRefPubMedWeb of Science
  50. 50.↵
    1. Witting N,
    2. Kupers RC,
    3. Svensson P,
    4. et al
    . A PET activation study of brush-evoked allodynia in patients with nerve injury pain. Pain 2006; 120: 145–54
    CrossRefPubMedWeb of Science
  51. 51.↵
    1. Witting N,
    2. Kupers RC,
    3. Svensson P,
    4. et al
    . Experimental brush-evoked allodynia activates posterior parietal cortex. Neurology 2001; 57: 1817–24
    CrossRef
  52. 52.↵
    1. Peyron R,
    2. Schneider F,
    3. Faillenot I,
    4. et al
    . An fMRI study of cortical representation of mechanical allodynia in patients with neuropathic pain. Neurology 2004; 63: 1838–46
    CrossRef
  53. 53.↵
    1. Kiernan JA,
    2. Barr ML
    . Barr's The Human Nervous System: An Anatomical Viewpoint. Philadelphia: Lippincott-Raven; 1998
  54. 54.↵
    1. Willis WD,
    2. Coggeshall RE
    . Structure of the dorsal horn. In: Sensory Mechanisms of the Spinal Cord 2nd ed. New York: Plenum Press; 1991: 155–84
  55. 55.↵
    1. Carpenter MB
    . Core Text of Neuroanatomy. Baltimore: Williams & Wilkins; 1991
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 31 (4)
American Journal of Neuroradiology
Vol. 31, Issue 4
1 Apr 2010
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Tactile Sensory and Pain Networks in the Human Spinal Cord and Brain Stem Mapped by Means of Functional MR Imaging
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
N.F. Ghazni, C.M. Cahill, P.W. Stroman
Tactile Sensory and Pain Networks in the Human Spinal Cord and Brain Stem Mapped by Means of Functional MR Imaging
American Journal of Neuroradiology Apr 2010, 31 (4) 661-667; DOI: 10.3174/ajnr.A1909

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Tactile Sensory and Pain Networks in the Human Spinal Cord and Brain Stem Mapped by Means of Functional MR Imaging
N.F. Ghazni, C.M. Cahill, P.W. Stroman
American Journal of Neuroradiology Apr 2010, 31 (4) 661-667; DOI: 10.3174/ajnr.A1909
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • Abbreviations
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Simultaneous cortical, subcortical, and brainstem mapping of sensory activation
  • Functional magnetic resonance imaging of the lumbosacral cord during a lower extremity motor task
  • Differential fMRI Activation Patterns to Noxious Heat and Tactile Stimuli in the Primate Spinal Cord
  • Crossref (50)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Neuroimaging of the periaqueductal gray: State of the field
    Clas Linnman, Eric A. Moulton, Gabi Barmettler, Lino Becerra, David Borsook
    NeuroImage 2012 60 1
  • Pain imaging in health and disease — how far have we come?
    Petra Schweinhardt, M. Catherine Bushnell
    Journal of Clinical Investigation 2010 120 11
  • The current state-of-the-art of spinal cord imaging: Applications
    C.A. Wheeler-Kingshott, P.W. Stroman, J.M. Schwab, M. Bacon, R. Bosma, J. Brooks, D.W. Cadotte, T. Carlstedt, O. Ciccarelli, J. Cohen-Adad, A. Curt, N. Evangelou, M.G. Fehlings, M. Filippi, B.J. Kelley, S. Kollias, A. Mackay, C.A. Porro, S. Smith, S.M. Strittmatter, P. Summers, A.J. Thompson, I. Tracey
    NeuroImage 2014 84
  • Assessment of physiological noise modelling methods for functional imaging of the spinal cord
    Yazhuo Kong, Mark Jenkinson, Jesper Andersson, Irene Tracey, Jonathan C.W. Brooks
    NeuroImage 2012 60 2
  • Ten Key Insights into the Use of Spinal Cord fMRI
    Jocelyn M. Powers, Gabriela Ioachim, Patrick W. Stroman
    Brain Sciences 2018 8 9
  • Combined T2*-weighted measurements of the human brain and cervical spinal cord with a dynamic shim update
    Jürgen Finsterbusch, Christian Sprenger, Christian Büchel
    NeuroImage 2013 79
  • Central mechanisms of itch
    Hideki Mochizuki, Ryusuke Kakigi
    Clinical Neurophysiology 2015 126 9
  • Using Functional Magnetic Resonance Imaging to Determine if Cerebral Hemodynamic Responses to Pain Change Following Thoracic Spine Thrust Manipulation in Healthy Individuals
    Cheryl Sparks, Joshua A. Cleland, James M. Elliott, Michael Zagardo, Wen-Ching Liu
    Journal of Orthopaedic & Sports Physical Therapy 2013 43 5
  • Should systematic reviews assess the risk of bias from sham–placebo acupuncture control procedures?
    Ian Appleyard, Thomas Lundeberg, Nicola Robinson
    European Journal of Integrative Medicine 2014 6 2
  • Activation of Bilateral Secondary Somatosensory Cortex With Right Hand Touch Stimulation: A Meta-Analysis of Functional Neuroimaging Studies
    Gemma Lamp, Peter Goodin, Susan Palmer, Essie Low, Ayla Barutchu, Leeanne M. Carey
    Frontiers in Neurology 2019 9

More in this TOC Section

  • Kurtosis and Epileptogenic Tubers: A Pilot Study
  • Glutaric Aciduria Type 1: DK vs. Conventional MRI
  • Multiparametric MRI in PEDS Pontine Glioma
Show more FUNCTIONAL

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire