Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleBRAIN

Age-Dependent Normal Values of T2* and T2′ in Brain Parenchyma

S. Siemonsen, J. Finsterbusch, J. Matschke, A. Lorenzen, X.-Q. Ding and J. Fiehler
American Journal of Neuroradiology May 2008, 29 (5) 950-955; DOI: https://doi.org/10.3174/ajnr.A0951
S. Siemonsen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Finsterbusch
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Matschke
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Lorenzen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
X.-Q. Ding
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Fiehler
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. ↵
    Calamante F, Lythgoe MF, Pell GS, et al. Early changes in water diffusion, perfusion, T1, and T2 during focal cerebral ischemia in the rat studied at 8.5 T. Magn Reson Med 1999;41:479–85
    CrossRefPubMedWeb of Science
  2. ↵
    An H, Lin W. Quantitative measurements of cerebral blood oxygen saturation using magnetic resonance imaging. J Cereb Blood Flow Metab 2000;20:1225–36
    PubMedWeb of Science
  3. ↵
    Ding XQ, Kucinski T, Wittkugel O, et al. Normal brain maturation characterized with age-related T2 relaxation times: an attempt to develop a quantitative imaging measure for clinical use. Invest Radiol 2004;39:740–46
    CrossRefPubMedWeb of Science
  4. ↵
    Bottomley PA, Foster TH, Argersinger RE, et al. A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1–100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and age. Med Phys 1984;11:425–48
    CrossRefPubMedWeb of Science
  5. ↵
    Brooks DJ, Luthert P, Gadian D, et al. Does signal-attenuation on high-field T2-weighted MRI of the brain reflect regional cerebral iron deposition? Observations on the relationship between regional cerebral water proton T2 values and iron levels. J Neurol Neurosurg Psychiatry 1989;52:108–11
    Abstract/FREE Full Text
  6. ↵
    Geisler BS, Brandhoff F, Fiehler J, et al. Blood-oxygen-level-dependent MRI allows metabolic description of tissue at risk in acute stroke patients. Stroke 2006;37:1778–84
    Abstract/FREE Full Text
  7. ↵
    Speck O, Chang L, DeSilva NM, et al. Perfusion MRI of the human brain with dynamic susceptibility contrast: gradient-echo versus spin-echo techniques. J Magn Reson Imaging 2000;12:381–87
    CrossRefPubMed
  8. ↵
    Speck O, Ernst T, Chang L. Biexponential modeling of multigradient-echo MRI data of the brain. Magn Reson Med 2001;45:1116–21
    CrossRefPubMed
  9. ↵
    Fazekas F, Chawluk JB, Alavi A, et al. MR signal abnormalities at 1.5 T in Alzheimer's dementia and normal aging. AJR Am J Roentgenol 1987;149:351–56
    CrossRefPubMedWeb of Science
  10. ↵
    Inglese M, Ge Y. Quantitative MRI: hidden age-related changes in brain tissue. Top Magn Reson Imaging 2004;15:355–63
    CrossRefPubMed
  11. ↵
    Breger RK, Yetkin FZ, Fischer ME, et al. T1 and T2 in the cerebrum: correlation with age, gender, and demographic factors. Radiology 1991;181:545–47
    PubMed
  12. ↵
    Agartz I, Saaf J, Wahlund LO, et al. T1 and T2 relaxation time estimates in the normal human brain. Radiology 1991;181:537–43
    PubMedWeb of Science
  13. ↵
    Fan G, Wu Z, Pan S, et al. Quantitative study of MR T1 and T2 relaxation times and 1HMRS in gray matter of normal adult brain. Chin Med J (Engl) 2003;116:400–04
    PubMed
  14. ↵
    Okujava M, Schulz R, Ebner A, et al. Measurement of temporal lobe T2 relaxation times using a routine diagnostic MR imaging protocol in epilepsy. Epilepsy Res 2002;48:131–42
    CrossRefPubMed
  15. ↵
    Dezortova M, Hajek M, Tintera J, et al. MR in phenylketonuria-related brain lesions. Acta Radiol 2001;42:459–66
    PubMed
  16. ↵
    Tamura H, Hatazawa J, Toyoshima H, et al. Detection of deoxygenation-related signal change in acute ischemic stroke patients by T2*-weighted magnetic resonance imaging. Stroke 2002;33:967–71
    Abstract/FREE Full Text
  17. ↵
    Baron JC, Bousser MG, Comar D, et al. Noninvasive tomographic study of cerebral blood flow and oxygen metabolism in vivo. Potentials, limitations, and clinical applications in cerebral ischemic disorders. Eur Neurol 1981;20:273–84
    PubMedWeb of Science
  18. ↵
    Bandettini PA, Wong EC, Jesmanowicz A, et al. Spin-echo and gradient-echo EPI of human brain activation using BOLD contrast: a comparative study at 1.5 T. NMR Biomed 1994;7:12–20
    PubMedWeb of Science
  19. ↵
    Ogawa S, Menon RS, Tank DW, et al. Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J 1993;64:803–12
    CrossRefPubMedWeb of Science
  20. ↵
    Lee JM, Vo KD, An H, et al. Magnetic resonance cerebral metabolic rate of oxygen utilization in hyperacute stroke patients. Ann Neurol 2003;53:227–32
    CrossRefPubMedWeb of Science
  21. ↵
    Akiyama H, Meyer JS, Mortel KF, et al. Normal human aging: factors contributing to cerebral atrophy. J Neurol Sci 1997;152:39–49
    CrossRefPubMedWeb of Science
  22. ↵
    Drayer BP. Imaging of the aging brain. Part I. Normal findings. Radiology 1988;166:785–96
    PubMedWeb of Science
  23. ↵
    Anderson VC, Litvack ZN, Kaye JA. Magnetic resonance approaches to brain aging and Alzheimer disease-associated neuropathology. Top Magn Reson Imaging 2005;16:439–52
    CrossRefPubMed
  24. Autti T, Raininko R, Vanhanen SL, et al. MRI of the normal brain from early childhood to middle age. II. Age dependence of signal intensity changes on T2-weighted images. Neuroradiology 1994;36:649–51
    CrossRefPubMedWeb of Science
  25. Benedetti B, Charil A, Rovaris M, et al. Influence of aging on brain gray and white matter changes assessed by conventional, MT, and DT MRI. Neurology 2006;66:535–39
    Abstract/FREE Full Text
  26. ↵
    Evans AC. The NIH MRI study of normal brain development. Neuroimage 2006;30:184–202
    CrossRefPubMedWeb of Science
  27. ↵
    Breteler MM, van Swieten JC, Bots ML, et al. Cerebral white matter lesions, vascular risk factors, and cognitive function in a population-based study: the Rotterdam Study. Neurology 1994;44:1246–52
    Abstract/FREE Full Text
  28. Schmidt R, Fazekas F, Kapeller P, et al. MRI white matter hyperintensities: three-year follow-up of the Austrian Stroke Prevention Study. Neurology 1999;53:132–39
    Abstract/FREE Full Text
  29. Farkas E, Luiten PG. Cerebral microvascular pathology in aging and Alzheimer's disease. Prog Neurobiol 2001;64:575–611
    CrossRefPubMedWeb of Science
  30. ↵
    Fazekas F, Schmidt R, Scheltens P. Pathophysiologic mechanisms in the development of age-related white matter changes of the brain. Dement Geriatr Cogn Disord 1998;9 Suppl 1:2–5
  31. ↵
    Bartzokis G, Mintz J, Sultzer D, et al. In vivo MR evaluation of age-related increases in brain iron. AJNR Am J Neuroradiol 1994;15:1129–38
    Abstract/FREE Full Text
  32. ↵
    Aoki S, Okada Y, Nishimura K, et al. Normal deposition of brain iron in childhood and adolescence: MR imaging at 1.5 T. Radiology 1989;172:381–85
    PubMedWeb of Science
  33. ↵
    Hendrie HC, Farlow MR, Austrom MG, et al. Foci of increased T2 signal intensity on brain MR scans of healthy elderly subjects. AJNR Am J Neuroradiol 1989;10:703–07
    Abstract/FREE Full Text
  34. ↵
    Kirkpatrick JB, Hayman LA. White-matter lesions in MR imaging of clinically healthy brains of elderly subjects: possible pathologic basis. Radiology 1987;162:509–11
    PubMedWeb of Science
  35. ↵
    Marner L, Nyengaard JR, Tang Y, et al. Marked loss of myelinated nerve fibers in the human brain with age. J Comp Neurol 2003;462:144–52
    CrossRefPubMedWeb of Science
  36. Aboitiz F, Rodriguez E, Olivares R, et al. Age-related changes in fibre composition of the human corpus callosum: sex differences. Neuroreport 1996;7:1761–64
    PubMedWeb of Science
  37. ↵
    Kapeller P, Schmidt R, Fazekas F. Qualitative MRI: evidence of usual aging in the brain. Top Magn Reson Imaging 2004;15:343–47
    CrossRefPubMed
  38. ↵
    Pujol J, Junque C, Vendrell P, et al. Biological significance of iron-related magnetic resonance imaging changes in the brain. Arch Neurol 1992;49:711–17
    CrossRefPubMedWeb of Science
  39. ↵
    Schenker C, Meier D, Wichmann W, et al. Age distribution and iron dependency of the T2 relaxation time in the globus pallidus and putamen. Neuroradiology 1993;35:119–24
    CrossRefPubMedWeb of Science
  40. ↵
    Rivkin MJ, Wolraich D, Als H, et al. Prolonged T*2 values in newborn versus adult brain: Implications for fMRI studies of newborns. Magn Reson Med 2004;51:1287–91
    CrossRefPubMed
  41. ↵
    Koenig SH, Brown RD 3rd, Gibson JF, et al. Relaxometry of ferritin solutions and the influence of the Fe3+ core ions. Magn Reson Med 1986;3:755–67
    PubMed
  42. Brittenham GM, Farrell DE, Harris JW, et al. Magnetic-susceptibility measurement of human iron stores. N Engl J Med 1982;307:1671–75
    PubMedWeb of Science
  43. ↵
    Thulborn KR, Sorensen AG, Kowall NW, et al. The role of ferritin and hemosiderin in the MR appearance of cerebral hemorrhage: a histopathologic biochemical study in rats. AJR Am J Roentgenol 1990;154:1053–59
    PubMedWeb of Science
  44. ↵
    Dockery SE, Suddarth SA, Johnson GA. Relaxation measurements at 300 MHz using MR microscopy. Magn Reson Med 1989;11:182–92
    PubMedWeb of Science
  45. ↵
    Vymazal J, Brooks RA, Zak O, et al. T1 and T2 of ferritin at different field strengths: effect on MRI. Magn Reson Med 1992;27:368–74
    PubMed
  46. ↵
    Bartzokis G, Aravagiri M, Oldendorf WH, et al. Field dependent transverse relaxation rate increase may be a specific measure of tissue iron stores. Magn Reson Med 1993;29:459–64
    PubMedWeb of Science
  47. ↵
    Michaeli S, Garwood M, Zhu XH, et al. Proton T2 relaxation study of water, N-acetylaspartate, and creatine in human brain using Hahn and Carr-Purcell spin echoes at 4T and 7T. Magn Reson Med 2002;47:629–33
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 29 (5)
American Journal of Neuroradiology
Vol. 29, Issue 5
May 2008
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Age-Dependent Normal Values of T2* and T2′ in Brain Parenchyma
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
S. Siemonsen, J. Finsterbusch, J. Matschke, A. Lorenzen, X.-Q. Ding, J. Fiehler
Age-Dependent Normal Values of T2* and T2′ in Brain Parenchyma
American Journal of Neuroradiology May 2008, 29 (5) 950-955; DOI: 10.3174/ajnr.A0951

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Age-Dependent Normal Values of T2* and T2′ in Brain Parenchyma
S. Siemonsen, J. Finsterbusch, J. Matschke, A. Lorenzen, X.-Q. Ding, J. Fiehler
American Journal of Neuroradiology May 2008, 29 (5) 950-955; DOI: 10.3174/ajnr.A0951
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • Patients and Methods
    • Results
    • Discussion
    • Conclusions
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Whole-Brain Vascular Architecture Mapping Identifies Region-Specific Microvascular Profiles In Vivo
  • Magnetic Resonance Fingerprinting with Combined Gradient- and Spin-echo Echo-planar Imaging: Simultaneous Estimation of T1, T2 and T2* with integrated-B1 Correction
  • Detection of Normal Aging Effects on Human Brain Metabolite Concentrations and Microstructure with Whole-Brain MR Spectroscopic Imaging and Quantitative MR Imaging
  • Quantitative T2'-Mapping in Acute Ischemic Stroke
  • Age-Related Changes of Cerebral Autoregulation: New Insights with Quantitative T2'-Mapping and Pulsed Arterial Spin-Labeling MR Imaging
  • T2' Imaging Within Perfusion-Restricted Tissue in High-Grade Occlusive Carotid Disease
  • Crossref (77)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Differentiating maturational and aging-related changes of the cerebral cortex by use of thickness and signal intensity
    Lars T. Westlye, Kristine B. Walhovd, Anders M. Dale, Atle Bjørnerud, Paulina Due-Tønnessen, Andreas Engvig, Håkon Grydeland, Christian K. Tamnes, Ylva Østby, Anders M. Fjell
    NeuroImage 2010 52 1
  • Is R2* a New MRI Biomarker for the Progression of Parkinson’s Disease? A Longitudinal Follow-Up
    Miguel Ulla, Jean Marie Bonny, Lemlih Ouchchane, Isabelle Rieu, Beatrice Claise, Franck Durif, John Duda
    PLoS ONE 2013 8 3
  • MRI estimates of brain iron concentration in normal aging: Comparison of field-dependent (FDRI) and phase (SWI) methods
    Adolf Pfefferbaum, Elfar Adalsteinsson, Torsten Rohlfing, Edith V. Sullivan
    NeuroImage 2009 47 2
  • Quantitative mapping of T1 and T2* discloses nigral and brainstem pathology in early Parkinson's disease
    Simon Baudrexel, Lucas Nürnberger, Udo Rüb, Carola Seifried, Johannes C. Klein, Thomas Deller, Helmuth Steinmetz, Ralf Deichmann, Rüdiger Hilker
    NeuroImage 2010 51 2
  • Correlation of putative iron content as represented by changes in R2* and phase with age in deep gray matter of healthy adults
    E. Mark Haacke, Yanwei Miao, Manju Liu, Charbel A. Habib, Yashwanth Katkuri, Ting Liu, Zhihong Yang, Zhijin Lang, Jiani Hu, Jianlin Wu
    Journal of Magnetic Resonance Imaging 2010 32 3
  • Flow compensated quantitative susceptibility mapping for venous oxygenation imaging
    Bo Xu, Tian Liu, Pascal Spincemaille, Martin Prince, Yi Wang
    Magnetic Resonance in Medicine 2014 72 2
  • Appraising the Role of Iron in Brain Aging and Cognition: Promises and Limitations of MRI Methods
    Ana M. Daugherty, Naftali Raz
    Neuropsychology Review 2015 25 3
  • Effects of aging on $$T_{1}$$ T 1 , $$T_{2}^{*}$$ T 2 ∗ , and QSM MRI values in the subcortex
    M. C. Keuken, P.-L. Bazin, K. Backhouse, S. Beekhuizen, L. Himmer, A. Kandola, J. J. Lafeber, L. Prochazkova, A. Trutti, A. Schäfer, R. Turner, B. U. Forstmann
    Brain Structure and Function 2017 222 6
  • The Role of Hippocampal Iron Concentration and Hippocampal Volume in Age-Related Differences in Memory
    K. M. Rodrigue, A. M. Daugherty, E. M. Haacke, N. Raz
    Cerebral Cortex 2013 23 7
  • Age-related differences in iron content of subcortical nuclei observed in vivo: A meta-analysis
    Ana Daugherty, Naftali Raz
    NeuroImage 2013 70

More in this TOC Section

  • Enhanced Axonal Metabolism during Early Natalizumab Treatment in Relapsing-Remitting Multiple Sclerosis
  • SWI or T2*: Which MRI Sequence to Use in the Detection of Cerebral Microbleeds? The Karolinska Imaging Dementia Study
  • Progression of Microstructural Damage in Spinocerebellar Ataxia Type 2: A Longitudinal DTI Study
Show more BRAIN

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire