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Age-Dependent Normal Values of T2* and T2� in
Brain Parenchyma
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BACKGROUND AND PURPOSE: Physiologic age-related T2* and T2� values are required as reference for
comparison with disease-related deviations. In our study, T2* and T2� values (T2 values as control)
were determined with MR imaging in healthy subjects to determine standard values and investigate
age-related changes.

MATERIALS AND METHODS: Data of 50 patients without intraparenchymal pathology and 10 acute
stroke patients who underwent MR imaging including a T2 and T2* sequence with 3 echotimes were
included. After calculation of T2*, T2�, and T2 maps, the values of gray matter (GM) and white matter
(WM) for each hemisphere were measured in 6 distinct regions of interest (ROIs).

RESULTS: There was a negative correlation between age and T2* values in the caudate nucleus (r �
�0.34 Pearson correlation; P � .001) and lentiform nucleus (r � �0.67; P � .001) and a positive
correlation in the occipital (r � 0.41; P � .001) and subcortical (r � 0.45; P � .001) WM. An age
dependency for T2� values was only found for the caudate (r � �0.35; P � .001) and lentiform nucleus
(r � �0.69; P � .001). T2� values in acute stroke were lower than normal in all patients with stroke.

CONCLUSION: Decrease in T2� and T2* values in GM and increase of T2* values in WM correlate with
the progress of brain aging. Explanations for decreasing T2� and T2* values include iron deposition in
the caudate and lentiform nucleus. In contrast to T2* values, there is no association of T2� values with
the degree of leukoaraiosis. These age-dependent values can be used as a reference in neurovascular
diseases and for the discussion of functional MR imaging data.

The possibility of measurements of T2* and T2� values is of
considerable interest for the application of MR imaging in

the evaluation of cerebral disease. The use of quantitative tech-
niques potentially increases the diagnostic sensitivity and
specificity in the characterization of brain tissue pathologic
processes. T2* and T2� values represent intrinsic parameters
of tissue that determine MR imaging signal intensity. These
values are sensitive to changes in chemical composition and
metabolic modifications that accompany cerebral pathologic
processes. T2� is equal to T2* corrected for spin-spin effects
and therefore better isolates the influences of deoxyhemoglobin
on T2* values according to the formula 1/T2� � 1/T2*�1/T2.1,2

Quantitative MR values have been used in several studies
for different conditions. Measurement of T2 values is used in
the diagnosis of leukoencephalopathy or developmental
anomalies of gray (GM) and white matter (WM) in children.3

It has been known for a long time that age-dependent changes
in brain structure and metabolism are associated with changes
of relaxation values.4 Measurement of T2* and T2� values has
been used for determination of iron tissue concentration,5 and
calculation of T2� values has already been used in MR imaging
in acute stroke to investigate the oxygen extraction fraction
(OEF) in acute ischemic stroke2,6 and chronic misery perfu-
sion.7,8 However, normal reference T2� values have not been
reported so far, and the determination of T2� reference values

is mandatory for future applications in ischemic disease. In
our study, T2* and T2� values (and T2 values as control) were
determined with MR imaging in distinct regions of interest
(ROIs) in the WM and in the basal ganglia in subjects without
intraparenchymal pathologic processes to determine age-re-
lated normal values. To prove applicability of the obtained T2�
normal values, in addition, T2� values were measured in 10
patients with acute stroke.

Patients and Methods
Fifty patients were retrospectively selected from a pool of 220 consec-

utive patients who underwent routine MR imaging examination, in-

cluding a T2 and T2* sequence with 3 different echotimes (TE) and

calculation of corresponding T2� maps in our department between

August 2006 and January 2007. Informed consent on the use of their

data for study purposes was obtained from all persons included. Only

subjects without intraparenchymal pathologic processes as deter-

mined independently by 2 experienced neuroradiologists were in-

cluded. Leukoaraiosis was considered a regular aging process and was

graded corresponding to the Fazekas score.9 Patients with any other

brain lesions (eg, brain tumors or other structural defects) were

excluded.

MR Imaging Protocol and T2 Maps
All MR imaging scans were conducted on a 1.5T MR system (Magne-

tom Sonata; Siemens, Erlangen, Germany). The MR protocol in-

cluded a T2 and T2* sequence. For T2 determination, a fast spin-echo

sequence with 15 echoes per shot was used to acquire images at 3

different TE of 12, 84, and 156 ms within a total acquisition time of

74 s (number of sections, 24; section thickness, 5 mm; section spacing,

0 mm; FOV, 240 mm; matrix, 74 � 128; TR, 4550 ms; and refocusing

flip angle, 150°). T2*-weighted images were obtained with a single-

shot echo-planar imaging sequence at a TE of 20, 52, and 88 ms and a

TR of 3240 ms, giving a total acquisition time of 19 s (flip angle, 90°;

other parameter as for T2).
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Calculation of qT2*, qT2� and qT2 Images
Quantitative T2 (qT2), qT2*, and qT2� maps were obtained on-the-

fly on the MR system with an extended image reconstruction algo-

rithm custom made by the manufacturer’s image calculation environ-

ment (ICE). T2* and T2 maps were calculated by separately fitting a

single exponential term to the signal intensity decay curve given by

SI(t)�SI0 e�t/T2 for the signal intensities of the multiple TE data

(SI(t)) of the T2 and T2* sequences. T2� is equivalent to T2* corrected

for spin–spin (T2) effects according to the relationship: 1/T2� �

1/T2*�1/T2.1 For each voxel, the quantitative T2 and T2* values were

used to generate T2� values by applying this relationship.2 Voxel sizes

of the obtained parameter maps were 3.2 � 1.9 � 5 mm3.

Regions-of-Interest Analysis
T2�, T2*, and T2 values of GM and WM were measured in 12 distinc-

tive ROIs on each of the created qT2�, qT2*, and qT2 maps with

medical image processing, analysis, and visualization (MIPAV) soft-

ware (Center for Information Technology, National Institutes of

Health, Bethesda, Md).

For definition of ROIs, T2-weighted images (third echo of triple-

echo T2 sequence) were used. Predefined ROIs were then transferred

to corresponding qT2�, qT2*, and qT2 images.

T2*, T2�, and T2 values of deep GM and WM for each hemisphere

were measured in 6 ROIs chosen in different brain regions: frontal

WM (frontalWM), occipitoparietal WM (opWM), subcortical WM

(sWM), caudate nucleus (caudGM), thalamus (thalGM), and lenti-

form nucleus (lentGM) (Fig 1). For definition of the first 2 GM ROIs,

the same transaxial section was used. The third ROI was located in the

axial section showing the largest extent of the transaxial sectioned

lentiform nucleus. The ROIs were chosen carefully to minimize par-

tial volume effects. All ROIs were the same shape and comprised an

area of 21 mm2, except for the ROI at the caudate nucleus, which was

chosen with an area of 12 mm2. These 2 types of ROIs were predefined

manually and then transferred for each patient intraindividually to

each parameter map. No ROIs were chosen in cortical GM because of

substantial partial volume effects contributed by CSF. We conducted

all numeric calculations for ROI analysis using the MIPAV software. Sta-

tistical analysis was performed with SPSS 13.0 (correlation between grade

of leukoaraiosis and T2, T2*, and T2� WM values [Spearman rho]; cal-

culation of Pearson correlation coefficients and corresponding P values

for each ROI localization and the age dependence of T2*, T2�, and T2

values; and Mann-Whitney U test for comparison of T2� values mea-

sured in patients with acute stroke with normal reference value).

Measurement of T2� Values in Acute Stroke Lesions
For proof of principle, T2� values were measured within the hypoper-

fused brain tissue in 10 patients with acute stroke. Inclusion criteria were

MR imaging examination within 6 hours after the onset of symptoms;

acute ischemic stroke in the territory of the middle cerebral artery; and

visible, hypointense lesion on T2� maps in WM of the affected hemi-

sphere. Hypoperfused tissue was delineated in time-to-peak perfusion

maps as the region with perfusion delay apparent for the observer by

visual inspection. Mean T2� values were obtained for each patient.

Results
The mean age of the patients was 54 � 20 years (mean � SD)
ranging from 12 to 91 years (30 male and 20 female). Age distri-
bution for the entire collective was found as illustrated in Fig 2.

T2�, T2*, and T2 values were determined for all 50 patients
within 6 ROIs for each hemisphere. Mean absolute values and
SD for T2*, T2�, and T2 values are listed in Table 1.

Mean T2, T2*, and T2� values for WM corresponding to
different grades of leukoaraiosis are displayed in Table 2. A
significant correlation was observed between the grade of leu-
koaraiosis and T2 WM values (Spearman rho � � 0.293; P �
.001 [2-tailed]) and also with T2* WM values (Spearman rho �
� 0.215; P � .001 [2-tailed]). No significant correlation was
found for T2� values measured in WM ROIs.

Correlation coefficients and corresponding P values for
each ROI localization and the age dependence of T2*, T2�, and
T2 values are displayed in Table 3.

In addition, age-related changes in T2*, T2�, and T2 values
were determined for male (n � 30; mean age, 54 years; mini-
mum, 15 years; maximum, 78 years) and female (n � 20; mean
age, 54 years; minimum, 12 years; maximum, 91 years) pa-
tients separately. Even stronger correlation coefficients were
observed compared with analysis of the entire patient collec-
tive when data of the female patient group were separately

Fig 1. Definition of 6 ROIs on T2-weighted images chosen in different brain regions: frontal WM (frontalWM), occipitoparietal WM (opWM), subcortical WM (sWM), caudate nucleus
(caudGM), thalamus (thalGM), and lentiform nucleus (lentGM).
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analyzed. In addition, there was a significant positive correla-
tion between age and T2� values in the occipital WM (r � 0.42;

P � .001) and a significant negative correlation between age
and T2 in the caudate nucleus (r � �0.37; P � .001) for the
female group. In contrast to the results for the entire patient
collective, the male patient group did not show significant (P
� .001) correlation between age and values determined in the
caudate nucleus on T2* and T2� maps as well as in occipital
WM on T2* images. There was no significant sex- or side-
dependent difference in absolute values of T2, T2*, or T2�.

Measurement of T2� Values in Patients With Acute
Stroke
Mean T2� values measured in ROIs defined in hypointense le-
sions in the infarcted hemisphere compared with the above ob-
tained T2� normal value for WM of 170.47 ms (95% confidence
interval, 159.24–181.70 ms) are displayed in Fig 3. All T2� values
measured in patients with acute stroke inside the visible hypoin-
tense T2� lesion were lower than the obtained normal reference
value for WM in healthy control subjects (P � .001).

Discussion
Quantitative MR techniques have been shown to be sensitive
to microstructural and metabolic changes.3,10 The use of
quantitative MR imaging parameters such as T2*, T2�, and T2
values, each contributing to different tissue characteristics, is
essential to detect alterations in signal intensity resulting from
tissue abnormalities. Reference values of healthy control sub-
jects with respect to age are essential to interpret the observed
values in pathologic conditions. Therefore, we sought to in-
vestigate T2* and T2� values in healthy control subjects and
their age-related changes. Absolute T2 values and their age-
related changes have been investigated by several studies.3,11-13

In our study, T2 values were determined as controls in addi-
tion to the primary target variables T2* and T2� parameters.
The mean T2 value of 170 ms for WM in our study agrees with
a study reporting a T2 value of 96 ms in WM obtained in the

Fig 2. Age distribution of the healthy subjects.

Table 1: Mean (MW) and SD for T2*, T2�, and T2 values

Values MW (ms) SD
T2*_GM 48.48 12.09
T2*_WM 67.63 11.01
T2_GM 96.07 9.06
T2_WM 109.77 11.37
T2�_GM 109.92 44.91
T2�_WM 170.47 99.26

Note:—GM indicates gray matter; WM, white matter.

Table 2: Mean (MW) and SD for T2*, T2, and T2� values for WM
corresponding to different grades of leukoaraiosis (0 – 6)

WM Values
Leukoaraiosis

Grade MW (ms) SD
T2* WM 0 66.12 8.19

1 68.21 10.65
2 67.10 10.48
3 74.54 8.60
4 64.25 27.78
5 70.74 20.20
6 69.56 18.61

T2 WM 0 105.97 10.00
1 111.46 11.18
2 109.27 10.12
3 114.11 11.01
4 123.75 11.48
5 124.13 15.46
6 119.44 9.14

T2� WM 0 161.07 76.12
1 173.19 110.79
2 169.98 91.62
3 219.38 160.68
4 147.58 124.84
5 158.31 96.44
6 181.26 118.54

Note:—WM indicates white matter.

Table 3: Pearson correlation coefficients and corresponding P
values for each ROI localization and the age dependence of T2*,
T2�, and T2 values

T2 Values, ROI
Localization

Pearson Correlation
Coefficient P Value

T2*_caudGM �0.34 .001*
T2*_lentGM �0.67 .001*
T2*_thalGM 0.10 .336
T2*_frontalWM �0.01 .933
T2*_opWM 0.41 .001*
T2*_sWM 0.45 .001*
T2_caudGM �0.18 .067
T2_lentGM �0.14 .168
T2_thalGM 0.55 .001*
T2_frontalWM 0.60 .001*
T2_opWM 0.42 .001*
T2_sWM 0.65 .001*
T2�_caudGM �0.35 .001*
T2�_lentGM �0.69 .001*
T2�_thalGM �0.13 .200
T2�_frontalWM 0.00 .995
T2�_opWM 0.19 .053
T2�_sWM 0.01 .920

Note:—ROI indicates region of interest; GM, gray matter; WM, white matter; opWM,
occipitoparietal WM; sWM, subcortical WM; caudGM, caudate nucleus; thalGM, thalamus;
and lentGM, lentiform nucleus.
* Indicating significant correlation (2-tailed).
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temporal lobe of adults,14 and another study, describing a T2
value of 95 ms for frontoparietal WM.15 Other studies11 have
found a significant effect of age on T2 values in WM and also a
positive effect on T2 values in the thalamus with aging. T2�
values were independent from pre-existing leukoaraiosis.

Obtaining normal values for T2� as a reference is equally
essential because T2� maps have already been used in several
studies to measure the OEF as a parameter of brain metabo-
lism, especially in vascular pathologic processes such as arte-
rial stenosis and stroke.6,16 Positron-emission tomography
(PET) is usually needed to measure the OEF.17 In contrast, T2�
maps are more easily applicable in clinical routine and can
easily be incorporated into an protocol for acute stroke. Nor-
mal reference values are needed to allow further evaluation of
pathologic variation in brain tissue. To our knowledge, there
are no studies reporting on normal T2� values as a reference so
far. In our study, mean T2� values in WM were 170 (� 99 SD)
and 109.92 (� 44.91 SD) in GM. These values show a high SD
and variance compared with T2* and T2 values (Table 1). This
shortcoming is easily understood when considering the for-
mula 1/T2*�1/T2 � 1/T2�,2 implying that small changes in
T2 or T2* values show, in contrast, a large effect on T2� values.
The acquisition of the T2� sequence still needs improvement,
but in the setting of acute stroke, time limitations prohibit
achieving a better signal-to-noise ratio at the cost of acquisi-
tion time.

Moreover, the results have implications with regard to
functional MR imaging studies because blood oxygen level-
dependent (BOLD) optimization in signal intensity is
achieved when TEs are set equal to the T2* values of the tissue
of interest. The magnitude of the BOLD change in signal in-
tensity on brain functional MR imaging is dependent on in-
trinsic tissue properties such as transverse relaxation time
(T2*) and extrinsic parameters such as TE and magnetic field
strength.18 In addition, abnormalities shown with these tech-
niques may correspond to increasing calcification in areas of
the extrapyramidal system or, in cases of T2� images, to a vari-
ation in the deoxyhemoglobin concentration as an indicator
of the OEF in brain parenchyma. Changes in signal intensity

on T2* weighted BOLD MR imaging are
dependent on changes in the local con-
centration of deoxyhemoglobin.19 A hy-
pointense lesion on BOLD imaging corre-
sponding to a decrease of T2* indicates an
increased local deoxyhemoglobin con-
centration. Thus, T2* changes reflect an
alteration in oxygen availability and
might be related to age.2,20 The BOLD ef-
fect is superimposed on the underlying T2
processes in determining T2*. Therefore,
separation of these 2 contributions better
isolates the influences of deoxyhemoglo-
bin on T2*. The T2� image more clearly
displays susceptibility related influences
of deoxyhemoglobin on T2*.

To demonstrate applicability of the
obtained T2� normal values, in addition, T2� values were mea-
sured in 10 patients with acute stroke. PET studies reported an
increase of the OEF in ischemic brain tissue. Similar to hyper-
acute ischemic lesions in CT, the regions with abnormalities
on T2� BOLD imaging are clearly visible to the human eye, and
a measurable loss of T2� signal intensity in the infarcted hemi-
sphere compared with the unaffected hemisphere has been
reported.6 Our observations are in line with these reports. The
T2� values for all 10 patients with acute stroke were signifi-
cantly lower (P � .001) than the T2� normal value of 170 ms.

Age-related changes in brain anatomy during human de-
velopment represent one of the most challenging and impor-
tant topics of research in neuroscience. During infancy and
adolescence, developmental changes occur in GM and WM
microstructure and organization of the brain.21,22 MR imag-
ing has mainly contributed to the understanding of age-re-
lated brain changes, providing a noninvasive tool to study the
normal aging process in vivo at multiple time points23-26 be-
cause it is highly sensitive for detecting abnormalities of signal
intensity in brain parenchyma leading to increased recogni-
tion of alterations in signal intensity of the WM. Most of these
WM lesions generally appear as hyperintense on T2-weighted
images. Various studies describe a relationship between these
hyperintensities and increasing age.27-30 In this context, it has
been shown that T2 parameters do not provide sufficient in-
formation about the underlying microstructural modifica-
tions of brain tissue occurring with aging because they are
affected by several factors such as tissue attenuation and tissue
water content as well as by iron content in the tissue.5,31

Having obtained the individual T2*, T2�, and T2 values for
all subjects, we studied the age dependence of T2*, T2�, and T2
values. The accumulation of paramagnetic metals such as iron
could be a main reason for the reduction of the T2*, T2�, and
T2 values in deeper GM32 as it was also observed in our study.
The normal aging changes of the brain include enlargement of
the sulci and ventricles, and focal changes in WM.22,33,34 Our
results suggest an overall tendency for increase in T2*, T2, and
T2� during the aging process. In particular, dynamic degener-
ative changes of the microstructure in brain parenchyma be-

Fig 3. T2� values measured in acute stroke lesion (stroke)
compared with normal reference values in healthy subjects
(normal).
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cause of leukoaraiosis might contribute mainly to the detected
increase of T2* and T2, especially in the WM. However, there
was no association of T2� values with leukoaraiosis in our pa-
tients. Histopathologic studies have revealed that WM hyper-
intensities are associated with areas of tissue destruction in
demyelination and axonal changes such as a reduction of the
total length of myelinated fibers and also fiber loss, and that
these reported changes are detectable with quantitative MR
imaging techniques.35-37 The increase in T2* and T2 values
with age could represent diffuse structural changes in neurons
or myelin or a decrease in the cellularity of the brain with
aging. In the alternative sense, the reported increase in mea-
sured values may reflect small focal abnormalities not visual-
ized with MR imaging, such as senile plaques, amyloid depos-
its, small infarcts, or Virchow-Robin spaces.33

Basal ganglia represent an area especially susceptible to
pathophysiologic processes associated with deposition of iron
resulting in changes in signal intensity on MR imaging of the
individual brain with older age.38,39 MR imaging sequences
such as T2* and T2� are highly sensitive to ferritin iron within
brain tissue. In clinical practice, increased iron deposits may
be visible by darkening of the basal ganglia on qT2*, qT2�, and
qT2 maps.37 Visualizing normal iron deposition as detected
with MR imaging might be helpful in the diagnosis of known
iron-deposition diseases and also in the detection of iron-re-
lated pathologic changes. Because the increase in iron in the
brain is age related, the role of iron in age-related neurodegen-
erative disorders still needs investigation.31,39 Age-related
changes in signal intensity from the pallidum or thalamus,
possibly attributable to the deposition of iron, have been re-
ported.22 Rivkin et al40 measured T2* values in brain tissue of
neonates and adults with a mean age of 38 years, which in-
cluded the frontal and parietooccipital areas in the WM as well
as the thalamus. For the adult group, they reported mean T2*
values ranging from 62 to 69 ms and a brain average of T2*
values of 66 � 5 ms. The T2* values we obtained in corre-
sponding ROIs are in line with these measurements and are
also consistent with those reported by Speck et al.8

In theory, the more echoes, and thus more points, for cal-
culation of the signal intensity decay curve would be beneficial
for the derivation of T2 and T2* values and, consecutively, of
T2� values than from triple-echo sequences. In clinical rou-
tine, though, multi-echo MR images with more echoes also
require a longer TR. This leads to a longer MR acquisition time
and higher sensitivity to artifacts from patient movement,
which is most relevant in patients with acute stroke. Another
reason for deviations of measured values compared with other
studies might be that ferritin has been observed to exert a
strong magnetic effect that results in marked T2 shorten-
ing,41-43 and tissue T2 parameters have been shown to be field
dependent.44,45 Ferritin itself shortens T2 more in high-field
than in low-field instruments.31,46 Hence, cerebral T2 values
decrease with increasing field strength,5 and several qT2 refer-
ence values were obtained by low-field systems.3,12,47

Most of the patients included in our study presented with a
variety of neurologic symptoms because only patients with an
indication for MR imaging examination were scanned. None
of the subjects included in our study showed pathologic
changes in brain tissue. Because information concerning de-
mographic factors such as race, lifestyle factors such as alcohol

and coffee consumption, and medical history factors such as
surgery and drug use was not available, we are not able to
determine whether these might contribute to our results.

Conclusions
Decrease in T2� and T2* relaxation time values in GM and
increase of T2* and T2 in WM correlate with the progress of
the aging brain. We hypothesize that decreasing T2� and T2*
values result from iron deposition in the caudate and lenti-
form nucleus, whereas the increase in WM may be related to
an increased OEF. In contrast to T2* values, there is no asso-
ciation of T2� values with the degree of leukoaraiosis. These
age-dependent values can be used as a reference in neurovas-
cular diseases and for the discussion of functional MR imaging
data.
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