Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleBRAIN TUMOR IMAGING

Multisite Benchmark Study for Standardized Relative CBV in Untreated Brain Metastases Using the DSC-MRI Consensus Acquisition Protocol

Sarah Kohn Loizzo, Melissa A. Prah, Min J. Kong, Daniel Phung, Javier C. Urcuyo, Jason Ye, Frank J. Attenello, Jesse Mendoza, Yuxiang Zhou, Mark S. Shiroishi, Leland S. Hu and Kathleen M. Schmainda
American Journal of Neuroradiology February 2025, DOI: https://doi.org/10.3174/ajnr.A8531
Sarah Kohn Loizzo
aFrom the Department of Radiation Oncology (S.K.L.), Medical College of Wisconsin, Milwaukee, Wisconsin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Melissa A. Prah
kDepartment of Biophysics (M.A.P., K.M.S.), Medical College of Wisconsin, Milwaukee, Wisconsin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Melissa A. Prah
Min J. Kong
bDepartment of Radiology (M.J.K., Y.Z., L.S.H.), Mayo Clinic Arizona, Phoenix, Arizona
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Min J. Kong
Daniel Phung
cDepartment of Radiology (D.P., J.M., M.S.S.), Keck School of Medicine of the University of Southern California, Los Angeles, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Daniel Phung
Javier C. Urcuyo
dMathematical Neuro-Oncology Lab (J.C.U.), Mayo Clinic Arizona, Scottsdale, Arizona
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jason Ye
eDepartment of Radiation Oncology (J.Y.), Keck School of Medicine of USC, Los Angeles, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Frank J. Attenello
fDepartment of Neurological Surgery (F.J.A.), Keck School of Medicine of USC, Los Angeles, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jesse Mendoza
cDepartment of Radiology (D.P., J.M., M.S.S.), Keck School of Medicine of the University of Southern California, Los Angeles, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yuxiang Zhou
bDepartment of Radiology (M.J.K., Y.Z., L.S.H.), Mayo Clinic Arizona, Phoenix, Arizona
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Yuxiang Zhou
Mark S. Shiroishi
cDepartment of Radiology (D.P., J.M., M.S.S.), Keck School of Medicine of the University of Southern California, Los Angeles, California
gImaging Genetics Center (M.S.S.), USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Marina del Rey, California
hDepartment of Population and Public Health Sciences (M.S.S.), Keck School of Medicine of USC, Los Angeles, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Mark S. Shiroishi
Leland S. Hu
bDepartment of Radiology (M.J.K., Y.Z., L.S.H.), Mayo Clinic Arizona, Phoenix, Arizona
iDepartment of Cancer Biology (L.S.H.), Mayo Clinic Arizona, Phoenix, Arizona
jDepartment of Neurological Surgery (L.S.H.), Mayo Clinic Arizona, Phoenix, Arizona
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Leland S. Hu
Kathleen M. Schmainda
kDepartment of Biophysics (M.A.P., K.M.S.), Medical College of Wisconsin, Milwaukee, Wisconsin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Kathleen M. Schmainda
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Cagney DN,
    2. Martin AM,
    3. Catalano PJ, et al
    . Incidence and prognosis of patients with brain metastases at diagnosis of systemic malignancy: a population-based study. Neuro Oncol 2017;19:1511–21 doi:10.1093/neuonc/nox077 pmid:28444227
    CrossRefPubMed
  2. 2.↵
    1. Stelzer K
    . Epidemiology and prognosis of brain metastases. Surg Neurol Int 2013;4:S192–202 doi:10.4103/2152-7806.111296 pmid:23717790
    CrossRefPubMed
  3. 3.↵
    1. Kaufmann TJ,
    2. Smits M,
    3. Boxerman J, et al
    . Consensus recommendations for a standardized brain tumor imaging protocol for clinical trials in brain metastases. Neuro Oncol 2020;22:757–72 doi:10.1093/neuonc/noaa030 pmid:32048719
    CrossRefPubMed
  4. 4.↵
    1. Eichler AF,
    2. Plotkin SR
    . Brain Metastases Opinion statement. Curr Treat Options Neurol 2008;10:308–14 doi:10.1007/s11940-008-0033-x pmid:18579017
    CrossRefPubMed
  5. 5.↵
    1. Derks SHAE,
    2. van der Veldt AAM,
    3. Smits M
    . Brain metastases: the role of clinical imaging. Br J Radiology 2022;95:20210944 doi:10.1259/bjr.20210944 pmid:34808072
    CrossRefPubMed
  6. 6.↵
    1. Patel P,
    2. Baradaran H,
    3. Delgado D, et al
    . MR perfusion-weighted imaging in the evaluation of high-grade gliomas after treatment: a systematic review and meta-analysis. Neuro Oncol 2017;19:118–27 doi:10.1093/neuonc/now148 pmid:27502247
    CrossRefPubMed
  7. 7.↵
    1. Law M,
    2. Cha S,
    3. Knopp EA, et al
    . High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging. Radiology 2002;222:715–21 doi:10.1148/radiol.2223010558 pmid:11867790
    CrossRefPubMedWeb of Science
  8. 8.↵
    1. Kremer S,
    2. Grand S,
    3. Berger F, et al
    . Dynamic contrast-enhanced MRI: differentiating melanoma and renal carcinoma metastases from high-grade astrocytomas and other metastases. Neuroradiology 2003;45:44–49 doi:10.1007/s00234-002-0886-8 pmid:12525954
    CrossRefPubMed
  9. 9.↵
    1. Chiang IC,
    2. Kuo Y-T,
    3. Lu C-Y, et al
    . Distinction between high-grade gliomas and solitary metastases using peritumoral 3T magnetic resonance spectroscopy, diffusion, and perfusion imaging. Neuroradiology 2004;46:619–27 doi:10.1007/s00234-004-1246-7 pmid:15243726
    CrossRefPubMedWeb of Science
  10. 10.↵
    1. Bulakbasi N,
    2. Kocaoglu M,
    3. Farzaliyev A, et al
    . Assessment of diagnostic accuracy of perfusion MR imaging in primary and metastatic solitary malignant brain tumors. AJNR Am J Neuroradiol 2005;26:2187–99 pmid:16219821
    PubMed
  11. 11.↵
    1. Calli C,
    2. Kitis O,
    3. Yunten N, et al
    . Perfusion and diffusion MR imaging in enhancing malignant cerebral tumors. Eur J Radiology 2006;58:394–403 doi:10.1016/j.ejrad.2005.12.032 pmid:16527438
    CrossRefPubMed
  12. 12.↵
    1. Fayed N,
    2. Dávila J,
    3. Medrano J, et al
    . Malignancy assessment of brain tumours with magnetic resonance spectroscopy and dynamic susceptibility contrast MRI. Eur J Radiology 2008;67:427–33 doi:10.1016/j.ejrad.2008.02.039 pmid:18442889
    CrossRefPubMed
  13. 13.↵
    1. Zhang H,
    2. Rödiger LA,
    3. Zhang G, et al
    . Differentiation between supratentorial single brain metastases and high grade astrocytic tumors: an evaluation of different DSC MRI measurements. Neuroradiol J 2009;22:369–77 doi:10.1177/197140090902200401 pmid:24207139
    CrossRefPubMed
  14. 14.↵
    1. Huang BY,
    2. Kwock L,
    3. Castillo M, et al
    . Association of choline levels and tumor perfusion in brain metastases assessed with proton MR spectroscopy and dynamic susceptibility contrast-enhanced perfusion weighted MRI. Technol Cancer Res Treat 2010;9:327–37 doi:10.1177/153303461000900403 pmid:20626199
    CrossRefPubMed
  15. 15.↵
    1. Hakyemez B,
    2. Erdogan C,
    3. Gokalp G, et al
    . Solitary metastases and high-grade gliomas: radiological differentiation by morphometric analysis and perfusion-weighted MRI. Clin Radiology 2010;65:15–20 doi:10.1016/j.crad.2009.09.005 pmid:20103416
    CrossRefPubMed
  16. 16.↵
    1. Server A,
    2. Orheim TED,
    3. Graff BA, et al
    . Diagnostic examination performance by using microvascular leakage, cerebral blood volume, and blood flow derived from 3-T dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging in the differentiation of glioblastoma multiforme and brain metastasis. Neuroradiology 2011;53:319–30 doi:10.1007/s00234-010-0740-3 pmid:20625709
    CrossRefPubMed
  17. 17.↵
    1. Mangla R,
    2. Kolar B,
    3. Zhu T, et al
    . Percentage signal recovery derived from MR dynamic susceptibility contrast imaging is useful to differentiate common enhancing malignant lesions of the brain. AJNR Am J Neuroradiol 2011;32:1004–10 doi:10.3174/ajnr.A2441 pmid:21511863
    Abstract/FREE Full Text
  18. 18.↵
    1. Zhang H,
    2. Zhang G,
    3. Oudkerk M
    . Brain metastases from different primary carcinomas: an evaluation of DSC MRI measurements. Neuroradiol J 2012;25:67–75 doi:10.1177/197140091202500109 pmid:24028878
    CrossRefPubMed
  19. 19.↵
    1. Tsougos I,
    2. Svolos P,
    3. Kousi E, et al
    . Differentiation of glioblastoma multiforme from metastatic brain tumor using proton magnetic resonance spectroscopy, diffusion and perfusion metrics at 3 T. Cancer Imaging 2012;12:423–36 doi:10.1102/1470-7330.2012.0038 pmid:23108208
    CrossRefPubMed
  20. 20.↵
    1. Tsolaki E,
    2. Svolos P,
    3. Kousi E, et al
    . Automated differentiation of glioblastomas from intracranial metastases using 3T MR spectroscopic and perfusion data. Int J Comput Assist Radiology Surg 2013;8:751–61 doi:10.1007/s11548-012-0808-0 pmid:23334798
    CrossRefPubMed
  21. 21.↵
    1. Bauer AH,
    2. Erly W,
    3. Moser FG, et al
    . Differentiation of solitary brain metastasis from glioblastoma multiforme: a predictive multiparametric approach using combined MR diffusion and perfusion. Neuroradiology 2015;57:697–703 doi:10.1007/s00234-015-1524-6 pmid:25845813
    CrossRefPubMed
  22. 22.↵
    1. She D,
    2. Xing Z,
    3. Cao D
    . Differentiation of glioblastoma and solitary brain metastasis by gradient of relative cerebral blood volume in the peritumoral brain zone derived from dynamic susceptibility contrast perfusion magnetic resonance imaging. J Comput Assist Tomogr 2019;43:13–17 doi:10.1097/RCT.0000000000000771 pmid:30015801
    CrossRefPubMed
  23. 23.↵
    1. Askaner K,
    2. Rydelius A,
    3. Engelholm S, et al
    . Differentiation between glioblastomas and brain metastases and regarding their primary site of malignancy using dynamic susceptibility contrast MRI at 3T. J Neuroradiol 2019;46:367–72 doi:10.1016/j.neurad.2018.09.006 pmid:30389510
    CrossRefPubMed
  24. 24.↵
    1. Chakhoyan A,
    2. Raymond C,
    3. Chen J, et al
    . Probabilistic independent component analysis of dynamic susceptibility contrast perfusion MRI in metastatic brain tumors. Cancer Imaging 2019;19:14 doi:10.1186/s40644-019-0201-0 pmid:30885275
    CrossRefPubMed
  25. 25.↵
    1. Aslan K,
    2. Gunbey HP,
    3. Tomak L, et al
    . Multiparametric MRI in differentiating solitary brain metastasis from high-grade glioma: diagnostic value of the combined use of diffusion-weighted imaging, dynamic susceptibility contrast imaging, and magnetic resonance spectroscopy parameters. Neurol Neurochir Pol 2019;53:227–37
    PubMed
  26. 26.↵
    1. Surendra KL,
    2. Patwari S,
    3. Agrawal S, et al
    . Percentage signal intensity recovery: a step ahead of rCBV in DSC MR perfusion imaging for the differentiation of common neoplasms of brain. Indian J Cancer 2020;57:36–43 doi:10.4103/ijc.IJC_421_18 pmid:31898591
    CrossRefPubMed
  27. 27.↵
    1. Cindil E,
    2. Sendur HN,
    3. Cerit MN, et al
    . Validation of combined use of DWI and percentage signal recovery-optimized protocol of DSC-MRI in differentiation of high-grade glioma, metastasis, and lymphoma. Neuroradiology 2021;63:331–42 doi:10.1007/s00234-020-02522-9 pmid:32821962
    CrossRefPubMed
  28. 28.↵
    1. Lavrova A,
    2. Teunissen WHT,
    3. Warnert EAH, et al
    . Diagnostic accuracy of arterial spin labeling in comparison with dynamic susceptibility contrast-enhanced perfusion for brain tumor surveillance at 3T MRI. Front Oncol 2022;12:849657 doi:10.3389/fonc.2022.849657 pmid:35669426
    CrossRefPubMed
  29. 29.↵
    1. Kamimura K,
    2. Nakajo M,
    3. Gohara M, et al
    . Differentiation of hemangioblastoma from brain metastasis using MR amide proton transfer imaging. J Neuroimaging 2022;32:920–29 doi:10.1111/jon.13019 pmid:35731178
    CrossRefPubMed
  30. 30.↵
    1. Semmineh NB,
    2. Bell LC,
    3. Stokes AM, et al
    . Optimization of acquisition and analysis methods for clinical dynamic susceptibility contrast MRI using a population-based digital reference object. AJNR Am J Neuroradiol 2018;39:1981–88 doi:10.3174/ajnr.A5827 pmid:30309842
    Abstract/FREE Full Text
  31. 31.↵
    1. Kamimura K,
    2. Kamimura Y,
    3. Nakano T, et al
    . Differentiating brain metastasis from glioblastoma by time-dependent diffusion MRI. Cancer Imaging 2023;23:75 doi:10.1186/s40644-023-00595-2 pmid:37553578
    CrossRefPubMed
  32. 32.↵
    1. Ahir BK,
    2. Engelhard HH,
    3. Lakka SS
    . Tumor development and angiogenesis in adult brain tumor: glioblastoma. Mol Neurobiol 2020;57:2461–78 doi:10.1007/s12035-020-01892-8 pmid:32152825
    CrossRefPubMed
  33. 33.↵
    1. Boxerman JL,
    2. Quarles CC,
    3. Hu LS, et al
    ; Jumpstarting Brain Tumor Drug Development Coalition Imaging Standardization Steering Committee. Consensus recommendations for a dynamic susceptibility contrast MRI protocol for use in high-grade gliomas. Neuro Oncol 2020;22:1262–75 doi:10.1093/neuonc/noaa141 pmid:32516388
    CrossRefPubMed
  34. 34.↵
    1. Bedekar D,
    2. Jensen T,
    3. Schmainda KM
    . Standardization of relative cerebral blood volume (rCBV) image maps for ease of both inter- and intrapatient comparisons. Magn Reson Med 2010;64:907–13 doi:10.1002/mrm.22445 pmid:20806381
    CrossRefPubMed
  35. 35.↵
    1. Prah MA,
    2. Stufflebeam SM,
    3. Paulson ES, et al
    . Repeatability of standardized and normalized relative CBV in patients with newly diagnosed glioblastoma. AJNR Am J Neuroradiol 2015;36:1654–61 doi:10.3174/ajnr.A4374 pmid:26066626
    Abstract/FREE Full Text
  36. 36.↵
    1. Schmainda KM,
    2. Prah MA,
    3. Marques H, et al
    . Value of dynamic contrast perfusion MRI to predict early response to bevacizumab in newly diagnosed glioblastoma: results from ACRIN 6686 multicenter trial. Neuro Oncol 2021;23:314–23 doi:10.1093/neuonc/noaa167 pmid:32678438
    CrossRefPubMed
  37. 37.↵
    1. Schmainda KM,
    2. Prah MA,
    3. Rand SD, et al
    . Multisite concordance of DSC-MRI analysis for brain tumors: results of a National Cancer Institute Quantitative Imaging Network Collaborative Project. AJNR Am J Neuroradiol 2018;39:1008–16 doi:10.3174/ajnr.A5675 pmid:29794239
    Abstract/FREE Full Text
  38. 38.↵
    1. Schmainda KM,
    2. Prah MA,
    3. Zhang Z, et al
    . Quantitative Delta T1 (dT1) as a replacement for adjudicated central reader analysis of contrast-enhancing tumor burden: a subanalysis of the American College of Radiology Imaging Network 6677/Radiation Therapy Oncology Group 0625 Multicenter Brain Tumor Trial. AJNR Am J Neuroradiol 2019;40:1132–39 doi:10.3174/ajnr.A6110 pmid:31248863
    Abstract/FREE Full Text
  39. 39.↵
    1. Boxerman JLJL,
    2. Schmainda KMM,
    3. Weisskoff RMM
    . Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. AJNR Am J Neuroradiol 2006;27:859–67 pmid:16611779
    PubMedWeb of Science
  40. 40.↵
    1. Whitfield BT,
    2. Huse JT
    . Classification of adult-type diffuse gliomas: impact of the World Health Organization 2021 update. Brain Pathol 2022;32:e13062. doi:10.1111/bpa.13062 pmid:35289001
    CrossRefPubMed
  41. 41.↵
    1. Berghoff AS,
    2. Preusser M
    . Anti-angiogenic therapies in brain metastases. Memo 2018;11:14–17
    CrossRefPubMed
  42. 42.↵
    1. Schmainda KM,
    2. Prah MA,
    3. Hu LS, et al
    . Moving toward a consensus DSC-MRI protocol: validation of a low-flip angle single-dose option as a reference standard for brain tumors. AJNR Am J Neuroradiol 2019;40:626–33 doi:10.3174/ajnr.A6015 pmid:30923088
    Abstract/FREE Full Text
  43. 43.↵
    1. Donahue KM,
    2. Krouwer H,
    3. Rand SD, et al
    . Utility of simultaneously acquired gradient-echo and spin-echo cerebral blood volume and morphology maps in brain tumor patients. Magn Reson Med 2000;43:845–53 doi:10.1002/1522-2594(200006)43:6<845::AID-MRM10>3.0.CO;2-J
    CrossRefPubMedWeb of Science
  44. 44.↵
    1. Prah MA,
    2. Al-Gizawiy MM,
    3. Mueller WM, et al
    . Spatial discrimination of glioblastoma and treatment effect with histologically-validated perfusion and diffusion magnetic resonance imaging metrics. J Neurooncol 2018;136:13–21 doi:10.1007/s11060-017-2617-3 pmid:28900832
    CrossRefPubMed
  45. 45.↵
    1. Hoxworth JM,
    2. Eschbacher JM,
    3. Gonzales AC, et al
    . Performance of standardized relative CBV for quantifying regional histologic tumor burden in recurrent high-grade glioma: comparison against normalized relative CBV using image-localized stereotactic biopsies. AJNR Am J Neuroradiol 2020;41:408–15 doi:10.3174/ajnr.A6486 pmid:32165359
    Abstract/FREE Full Text
  46. 46.↵
    1. Iv M,
    2. Liu X,
    3. Lavezo J, et al
    . Perfusion MRI-based fractional tumor burden differentiates between tumor and treatment effect in recurrent glioblastomas and informs clinical decision-making. AJNR Am J Neuroradiol 2019;40:1649–57 doi:10.3174/ajnr.A6211
    Abstract/FREE Full Text
  47. 47.↵
    1. Connelly JM,
    2. Prah MA,
    3. Santos-Pinheiro F, et al
    . Magnetic resonance imaging mapping of brain tumor burden: clinical implications for neurosurgical management: case report. Neurosurgery Open 2021;2:okab029 doi:10.1093/neuopn/okab029 pmid:34661110
    CrossRefPubMed
  48. 48.↵
    1. Skogen K,
    2. Schulz A,
    3. Dormagen JB, et al
    . Diagnostic performance of texture analysis on MRI in grading cerebral gliomas. Eur J Radiology 2016;85:824–29 doi:10.1016/j.ejrad.2016.01.013 pmid:26971430
    CrossRefPubMed
  49. 49.↵
    1. Hu LS,
    2. Eschbacher JM,
    3. Heiserman JE, et al
    . Reevaluating the imaging definition of tumor progression: perfusion MRI quantifies recurrent glioblastoma tumor fraction, pseudoprogression, and radiation necrosis to predict survival. Neuro Oncol 2012;14:919–30 doi:10.1093/neuonc/nos112 pmid:22561797
    CrossRefPubMed
PreviousNext
Back to top
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Multisite Benchmark Study for Standardized Relative CBV in Untreated Brain Metastases Using the DSC-MRI Consensus Acquisition Protocol
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Sarah Kohn Loizzo, Melissa A. Prah, Min J. Kong, Daniel Phung, Javier C. Urcuyo, Jason Ye, Frank J. Attenello, Jesse Mendoza, Yuxiang Zhou, Mark S. Shiroishi, Leland S. Hu, Kathleen M. Schmainda
Multisite Benchmark Study for Standardized Relative CBV in Untreated Brain Metastases Using the DSC-MRI Consensus Acquisition Protocol
American Journal of Neuroradiology Feb 2025, DOI: 10.3174/ajnr.A8531

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Standardized rCBV in Brain Metastases
Sarah Kohn Loizzo, Melissa A. Prah, Min J. Kong, Daniel Phung, Javier C. Urcuyo, Jason Ye, Frank J. Attenello, Jesse Mendoza, Yuxiang Zhou, Mark S. Shiroishi, Leland S. Hu, Kathleen M. Schmainda
American Journal of Neuroradiology Feb 2025, DOI: 10.3174/ajnr.A8531
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref (1)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Radiopaedia.org
    Frank Gaillard, Henry Knipe, Mohammed Abu Kamesh
    2016

More in this TOC Section

  • Cognitive Control in Tumor Language Plasticity
  • Temporal Evolution of Vestibular schwannoma
  • CE MRI for Brain Metastasis Detection
Show more Brain Tumor Imaging

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire