Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleARTIFICIAL INTELLIGENCE

Impact of SUSAN Denoising and ComBat Harmonization on Machine Learning Model Performance for Malignant Brain Neoplasms

Girish Bathla, Neetu Soni, Ian T. Mark, Yanan Liu, Nicholas B. Larson, Blake A. Kassmeyer, Suyash Mohan, John C. Benson, Saima Rathore and Amit K. Agarwal
American Journal of Neuroradiology July 2024, DOI: https://doi.org/10.3174/ajnr.A8280
Girish Bathla
aFrom the Department of Radiology (G.B., N.S.), University of Iowa Hospitals and Clinics, Iowa City, Iowa
bDepartment of Radiology (G.B., I.T.M., J.C.B.), Mayo Clinic, Rochester, Minnesota
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Girish Bathla
Neetu Soni
aFrom the Department of Radiology (G.B., N.S.), University of Iowa Hospitals and Clinics, Iowa City, Iowa
cDepartment of Radiology (N.S., A.K.A.), Mayo Clinic, Jacksonville, Florida
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Neetu Soni
Ian T. Mark
bDepartment of Radiology (G.B., I.T.M., J.C.B.), Mayo Clinic, Rochester, Minnesota
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Ian T. Mark
Yanan Liu
dAdvanced Pulmonary Physiomic Imaging Laboratory (Y.L.), University of Iowa, Iowa City, Iowa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nicholas B. Larson
eDivision of Clinical Trials and Biostatistics (N.B.L., B.A.K.), Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Rochester, Minnesota
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Nicholas B. Larson
Blake A. Kassmeyer
eDivision of Clinical Trials and Biostatistics (N.B.L., B.A.K.), Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Rochester, Minnesota
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Suyash Mohan
fDepartment of Radiology (S.M.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John C. Benson
bDepartment of Radiology (G.B., I.T.M., J.C.B.), Mayo Clinic, Rochester, Minnesota
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for John C. Benson
Saima Rathore
gAvid Radiopharmaceuticals (S.R.), Philadelphia, Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Amit K. Agarwal
cDepartment of Radiology (N.S., A.K.A.), Mayo Clinic, Jacksonville, Florida
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Amit K. Agarwal
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Bathla G,
    2. Dhruba DD,
    3. Soni N
    , et al. AI-based classification of three common malignant tumors in neuro-oncology: a multi-institutional comparison of machine learning and deep learning methods. J Neuroradiol 2024;51:258–64 doi:10.1016/j.neurad.2023.08.007 pmid:37652263
    CrossRefPubMed
  2. 2.↵
    1. Bathla G,
    2. Priya S,
    3. Liu Y, et al
    . Radiomics-based differentiation between glioblastoma and primary central nervous system lymphoma: a comparison of diagnostic performance across different MRI sequences and machine learning techniques. Eur Radiol 2021;31:8703–13 doi:10.1007/s00330-021-07845-6 pmid:33890149
    CrossRefPubMed
  3. 3.↵
    1. Priya S,
    2. Liu Y,
    3. Ward C, et al
    . Radiomic based machine learning performance for a three class problem in neuro-oncology: time to test the waters? Cancers (Basel) 2021;13:2568 doi:10.3390/cancers13112568 pmid:34073840
    CrossRefPubMed
  4. 4.↵
    1. Soni N,
    2. Priya S,
    3. Bathla G
    . Texture analysis in cerebral gliomas: a review of the literature. AJNR Am J Neuroradiol 2019;40:928–34 doi:10.3174/ajnr.A6075 pmid:31122918
    Abstract/FREE Full Text
  5. 5.↵
    1. Joo B,
    2. Ahn SS,
    3. An C, et al
    . Fully automated radiomics-based machine learning models for multiclass classification of single brain tumors: glioblastoma, lymphoma, and metastasis. J Neuroradiol 2023;50:388–95 doi:10.1016/j.neurad.2022.11.001 pmid:36370829
    CrossRefPubMed
  6. 6.↵
    1. Bologna M,
    2. Corino V,
    3. Mainardi L
    . Technical note: virtual phantom analyses for preprocessing evaluation and detection of a robust feature set for MRI-radiomics of the brain. Med Phys 2019;46:5116–23 doi:10.1002/mp.13834 pmid:31539450
    CrossRefPubMed
  7. 7.↵
    1. Mayerhoefer ME,
    2. Szomolanyi P,
    3. Jirak D, et al
    . Effects of MRI acquisition parameter variations and protocol heterogeneity on the results of texture analysis and pattern discrimination: an application-oriented study. Med Phys 2009;36:1236–43 doi:10.1118/1.3081408 pmid:19472631
    CrossRefPubMed
  8. 8.↵
    1. Buch K,
    2. Kuno H,
    3. Qureshi MM, et al
    . Quantitative variations in texture analysis features dependent on MRI scanning parameters: a phantom model. J Appl Clin Med Phys 2018;19:253–64 doi:10.1002/acm2.12482 pmid:30369010
    CrossRefPubMed
  9. 9.↵
    1. Lee J,
    2. Steinmann A,
    3. Ding Y, et al
    . Radiomics feature robustness as measured using an MRI phantom. Sci Rep 2021;11:3973 doi:10.1038/s41598-021-83593-3 pmid:33597610
    CrossRefPubMed
  10. 10.↵
    1. Orlhac F,
    2. Lecler A,
    3. Savatovski J, et al
    . How can we combat multicenter variability in MR radiomics? Validation of a correction procedure. Eur Radiol 2021;31:2272–80 doi:10.1007/s00330-020-07284-9 pmid:32975661
    CrossRefPubMed
  11. 11.↵
    1. Li Y,
    2. Ammari S,
    3. Balleyguier C, et al
    . Impact of preprocessing and harmonization methods on the removal of scanner effects in brain MRI radiomic features. Cancers (Basel) 2021;13:3000 doi:10.3390/cancers13123000 pmid:34203896
    CrossRefPubMed
  12. 12.↵
    1. Um H,
    2. Tixier F,
    3. Bermudez D, et al
    . Impact of image preprocessing on the scanner dependence of multi-parametric MRI radiomic features and covariate shift in multi-institutional glioblastoma datasets. Phys Med Biol 2019;64:165011 doi:10.1088/1361-6560/ab2f44 pmid:31272093
    CrossRefPubMed
  13. 13.↵
    1. Moradmand H,
    2. Aghamiri SM,
    3. Ghaderi R
    . Impact of image preprocessing methods on reproducibility of radiomic features in multimodal magnetic resonance imaging in glioblastoma. J Appl Clin Med Phys 2020;21:179–90 doi:10.1002/acm2.12795 pmid:31880401
    CrossRefPubMed
  14. 14.↵
    1. Smith SM,
    2. Brady JM
    . SUSAN: a new approach to low level image processing. Int J Comput Vis 1997;23:45–78 doi:10.1023/A:1007963824710
    CrossRefPubMed
  15. 15.↵
    1. Stamoulou E,
    2. Manikio GC,
    3. Tsiknakis M, et al
    . ComBat harmonization for multicenter MRI based radiomics features. In: Proceedings of the 2021 IEEE International Conference on Imaging Systems and Techniques (IST). August 24-25, 2021. New York, New York doi:10.1109/IST50367.2021.9745836
    CrossRef
  16. 16.↵
    1. Orlhac F,
    2. Eertink JJ,
    3. Cottereau AS, et al
    . A guide to ComBat harmonization of imaging biomarkers in multicenter studies. J Nucl Med 2022;63:172–79 doi:10.2967/jnumed.121.262464 pmid:34531263
    Abstract/FREE Full Text
  17. 17.↵
    1. Yin Y,
    2. Zhang X,
    3. Williams R, et al
    . LOGISMOS–layered optimal graph image segmentation of multiple objects and surfaces: cartilage segmentation in the knee joint. IEEE Trans Med Imaging 2010;29:2023–37 doi:10.1109/TMI.2010.2058861 pmid:20643602
    CrossRefPubMedWeb of Science
  18. 18.↵
    1. van Griethuysen JJM,
    2. Fedorov A,
    3. Parmar C, et al
    . Computational radiomics system to decode the radiographic phenotype. Cancer Res 2017;77:e104–07 doi:10.1158/0008-5472.CAN-17-0339 pmid:29092951
    Abstract/FREE Full Text
  19. 19.↵
    1. Fortin JP,
    2. Parker D,
    3. Tunç B, et al
    . Harmonization of multi-site diffusion tensor imaging data. Neuroimage 2017;161:149–170 doi:10.1016/j.neuroimage.2017.08.047 pmid:28826946
    CrossRefPubMed
  20. 20.↵
    1. Bathla G,
    2. Dhruba DD,
    3. Liu Y, et al
    . Differentiation between glioblastoma and metastatic disease on conventional MRI imaging using 3D-convolutional neural networks: model development and validation. Acad Radiol 2024;31:2041–49 doi:10.1016/j.acra.2023.10.044
    CrossRef
  21. 21.↵
    1. Hand DJ,
    2. Till RJ
    . A simple generalisation of the area under the ROC curve for multiple class classification problems. Machine Learning 2001;45:171–86 doi:10.1023/A:1010920819831
    CrossRef
  22. 22.↵
    R. Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; 2014
  23. 23.↵
    1. Ford J,
    2. Dogan N,
    3. Young L, et al
    . Quantitative radiomics: impact of pulse sequence parameter selection on MRI-based textural features of the brain. Contrast Media Mol Imaging 2018;2018:1729071 doi:10.1155/2018/172907]1
    CrossRefPubMed
  24. 24.↵
    1. Carré A,
    2. Klausner G,
    3. Edjlali M, et al
    . Standardization of brain MR images across machines and protocols: bridging the gap for MRI-based radiomics. Sci Rep 2020;10:12340 doi:10.1038/s41598-020-69298-z pmid:32704007
    CrossRefPubMed
  25. 25.↵
    1. Salome P,
    2. Sforazzini F,
    3. Grugnara G, et al
    . MR intensity normalization methods impact sequence specific radiomics prognostic model performance in primary and recurrent high-grade glioma. Cancers (Basel) 2023;15:965 doi:10.3390/cancers15030965 pmid:36765922
    CrossRefPubMed
  26. 26.↵
    1. Cackowski S,
    2. Barber E,
    3. Christen T
    . comBat versus cycleGAN for multi-center MR images harmonization. 2021. https://www.semanticscholar.org/paper/comTable. Accessed February 15, 2024
  27. 27.↵
    1. Mali SA,
    2. Ibrahim A,
    3. Woodruff HC
    , et al. Making radiomics more reproducible across scanner and imaging protocol variations: a review of harmonization methods. J Pers Med 2021;11:842 doi:10.3390/jpm11090842 pmid:34575619
    CrossRefPubMed
PreviousNext
Back to top
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Impact of SUSAN Denoising and ComBat Harmonization on Machine Learning Model Performance for Malignant Brain Neoplasms
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Girish Bathla, Neetu Soni, Ian T. Mark, Yanan Liu, Nicholas B. Larson, Blake A. Kassmeyer, Suyash Mohan, John C. Benson, Saima Rathore, Amit K. Agarwal
Impact of SUSAN Denoising and ComBat Harmonization on Machine Learning Model Performance for Malignant Brain Neoplasms
American Journal of Neuroradiology Jul 2024, DOI: 10.3174/ajnr.A8280

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Impact of SUSAN Denoising and ComBat Harmonization on Machine Learning Model Performance for Malignant Brain Neoplasms
Girish Bathla, Neetu Soni, Ian T. Mark, Yanan Liu, Nicholas B. Larson, Blake A. Kassmeyer, Suyash Mohan, John C. Benson, Saima Rathore, Amit K. Agarwal
American Journal of Neuroradiology Jul 2024, DOI: 10.3174/ajnr.A8280
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref (1)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Stability of radiomic features in magnetic resonance imaging of the female pelvis: A multicentre phantom study
    Roberto Sghedoni, Daniela Origgi, Noemi Cucurachi, Giuseppe Castiglioni Minischetti, Davide Alio, Giovanni Savini, Francesca Botta, Simona Marzi, Marco Aiello, Tiziana Rancati, Davide Cusumano, Letterio Salvatore Politi, Vittorio Didonna, Raffaella Massafra, Antonella Petrillo, Antonio Esposito, Sara Imparato, Luca Anemoni, Chandra Bortolotto, Lorenzo Preda, Luca Boldrini
    Physica Medica 2025 130

More in this TOC Section

  • AI-Enhanced Photon-Counting CT of Temporal Bone
  • DIRDL for Inflammatory Myelopathies
  • An AI De-identification Method for Pediatric MRIs
Show more Artificial Intelligence

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire