Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleARTIFICIAL INTELLIGENCE

Deep Learning–Based Synthetic TOF-MRA Generation Using Time-Resolved MRA in Fast Stroke Imaging

Sung-Hye You, Yongwon Cho, Byungjun Kim, Kyung-Sook Yang, InSeong Kim, Bo Kyu Kim, Arim Pak and Sang Eun Park
American Journal of Neuroradiology November 2023, DOI: https://doi.org/10.3174/ajnr.A8063
Sung-Hye You
aFrom the Department of Radiology, (S.-H.Y., B.K., B.K.K., A.P., S.E.P.), Anam Hospital, Korea University College of Medicine, Seoul, Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Sung-Hye You
Yongwon Cho
bBiomedical Research Center (Y.C.), Korea University College of Medicine, Seoul, Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Yongwon Cho
Byungjun Kim
aFrom the Department of Radiology, (S.-H.Y., B.K., B.K.K., A.P., S.E.P.), Anam Hospital, Korea University College of Medicine, Seoul, Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Byungjun Kim
Kyung-Sook Yang
cDepartment of Biostatistics (K.-S.Y.), Korea University College of Medicine, Seoul, Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Kyung-Sook Yang
InSeong Kim
dSiemens Healthineers (I.K.), Seoul, Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for InSeong Kim
Bo Kyu Kim
aFrom the Department of Radiology, (S.-H.Y., B.K., B.K.K., A.P., S.E.P.), Anam Hospital, Korea University College of Medicine, Seoul, Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Bo Kyu Kim
Arim Pak
aFrom the Department of Radiology, (S.-H.Y., B.K., B.K.K., A.P., S.E.P.), Anam Hospital, Korea University College of Medicine, Seoul, Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Arim Pak
Sang Eun Park
aFrom the Department of Radiology, (S.-H.Y., B.K., B.K.K., A.P., S.E.P.), Anam Hospital, Korea University College of Medicine, Seoul, Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Sang Eun Park
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Berkhemer OA,
    2. Jansen IG,
    3. Beumer D, et al
    ; MR CLEAN Investigators. Collateral status on baseline computed tomographic angiography and intra-arterial treatment effect in patients with proximal anterior circulation stroke. Stroke 2016;47:768–76 doi:10.1161/STROKEAHA.115.011788 pmid:26903582
    Abstract/FREE Full Text
  2. 2.↵
    1. Menon BK,
    2. Qazi E,
    3. Nambiar V, et al
    ; Interventional Management of Stroke III Investigators. Differential effect of baseline computed tomographic angiography collaterals on clinical outcome in patients enrolled in the Interventional Management of Stroke III trial. Stroke 2015;46:1239–44 doi:10.1161/STROKEAHA.115.009009 pmid:25791716
    Abstract/FREE Full Text
  3. 3.↵
    1. Goyal M,
    2. Demchuk AM,
    3. Menon BK, et al
    ; ESCAPE Trial Investigators. Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med 2015;372:1019–30 doi:10.1056/NEJMoa1414905 pmid:25671798
    CrossRefPubMed
  4. 4.↵
    1. Menon BK,
    2. d’Esterre CD,
    3. Qazi EM, et al
    . Multiphase CT angiography: a new tool for the imaging triage of patients with acute ischemic stroke. Radiology 2015;275:510–20 doi:10.1148/radiol.15142256 pmid:25633505
    CrossRefPubMed
  5. 5.↵
    1. van den Wijngaard IR,
    2. Holswilder G,
    3. Wermer MJ, et al
    . Assessment of collateral status by dynamic CT angiography in acute MCA stroke: timing of acquisition and relationship with final infarct volume. AJNR Am J Neuroradiol 2016;37:1231–36 doi:10.3174/ajnr.A4746 pmid:27032971
    Abstract/FREE Full Text
  6. 6.↵
    1. van den Wijngaard IR,
    2. Boiten J,
    3. Holswilder G, et al
    . Impact of collateral status evaluated by dynamic computed tomographic angiography on clinical outcome in patients with ischemic stroke. Stroke 2015;46:3398–404 doi:10.1161/STROKEAHA.115.010354 pmid:26542691
    Abstract/FREE Full Text
  7. 7.↵
    1. Powers WJ,
    2. Rabinstein AA,
    3. Ackerson T, et al
    . Guidelines for the Early Management of Patients With Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 2019;50:e344–418 doi:10.1161/STR.0000000000000211 pmid:31662037
    CrossRefPubMed
  8. 8.↵
    1. Hernández-Pérez M,
    2. Puig J,
    3. Blasco G, et al
    . Dynamic magnetic resonance angiography provides collateral circulation and hemodynamic information in acute ischemic stroke. Stroke 2016;47:531–34 doi:10.1161/STROKEAHA.115.010748 pmid:26658445
    Abstract/FREE Full Text
  9. 9.↵
    1. Nael K,
    2. Sakai Y,
    3. Khatri P, et al
    . Imaging-based selection for endovascular treatment in stroke. Radiographics 2019;39:1696–713 doi:10.1148/rg.2019190030 pmid:31589574
    CrossRefPubMed
  10. 10.↵
    1. Roh HG,
    2. Kim EY,
    3. Kim IS, et al
    . A novel collateral imaging method derived from time-resolved dynamic contrast-enhanced MR angiography in acute ischemic stroke: a pilot study. AJNR Am J Neuroradiol 2019;40:946–53 doi:10.3174/ajnr.A6068 pmid:31097431
    Abstract/FREE Full Text
  11. 11.↵
    1. Kim HJ,
    2. Lee SB,
    3. Choi JW, et al
    . Multiphase MR angiography collateral map: functional outcome after acute anterior circulation ischemic stroke. Radiology 2020;295:192–201 doi:10.1148/radiol.2020191712 pmid:32068506
    CrossRefPubMed
  12. 12.↵
    1. Sakata A,
    2. Sakamoto R,
    3. Fushimi Y, et al
    . Low-dose contrast-enhanced time-resolved angiography with stochastic trajectories with iterative reconstruction (IT-TWIST-MRA) in brain arteriovenous shunt. Eur Radiol 2022;32:5392–401 doi:10.1007/s00330-022-08678-7 pmid:35298680
    CrossRefPubMed
  13. 13.↵
    1. Goldman-Yassen AE,
    2. Raz E,
    3. Borja MJ, et al
    . Highly time-resolved 4D MR angiography using golden-angle radial sparse parallel (GRASP) MRI. Sci Rep 2022;12:15099 doi:10.1038/s41598-022-18191-y pmid:36064872
    CrossRefPubMed
  14. 14.↵
    1. Sorin V,
    2. Barash Y,
    3. Konen E, et al
    . Creating artificial images for radiology applications using generative adversarial networks (GANs): a systematic review. Acad Radiol 2020;27:1175–85 doi:10.1016/j.acra.2019.12.024 pmid:32035758
    CrossRefPubMed
  15. 15.↵
    1. Finck T,
    2. Li H,
    3. Grundl L, et al
    . Deep-learning generated synthetic double inversion recovery images improve multiple sclerosis lesion detection. Invest Radiol 2020;55:318–23 doi:10.1097/RLI.0000000000000640 pmid:31977602
    CrossRefPubMed
  16. 16.↵
    1. Pang H,
    2. Qi S,
    3. Wu Y, et al
    . NCCT-CECT image synthesizers and their application to pulmonary vessel segmentation. Comput Methods Programs Biomed 2023;231:107389 doi:10.1016/j.cmpb.2023.107389 pmid:36739625
    CrossRefPubMed
  17. 17.↵
    1. You SH,
    2. Cho Y,
    3. Kim B, et al
    . Synthetic time of flight magnetic resonance angiography generation model based on cycle-consistent generative adversarial network using PETRA-MRA in the patients with treated intracranial aneurysm. J Magn Reson Imaging 2022;56:1513–28 doi:10.1002/jmri.28114 pmid:35142407
    CrossRefPubMed
  18. 18.↵
    1. Matsuo H,
    2. Nishio M,
    3. Nogami M, et al
    . Unsupervised-learning-based method for chest MRI-CT transformation using structure constrained unsupervised generative attention networks. Sci Rep 2022;12:11090 doi:10.1038/s41598-022-14677-x pmid:35773366
    CrossRefPubMed
  19. 19.↵
    1. Wang R,
    2. Bashyam V,
    3. Yang Z, et al
    . Applications of generative adversarial networks in neuroimaging and clinical neuroscience. Neuroimage 2023;269:119898 doi:10.1016/j.neuroimage.2023.119898 pmid:36702211
    CrossRefPubMed
  20. 20.↵
    1. Wang Z,
    2. Bovik AC,
    3. Sheikh HR, et al
    . Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 2004;13:600–12 doi:10.1109/tip.2003.819861 pmid:15376593
    CrossRefPubMedWeb of Science
  21. 21.↵
    1. You SH,
    2. Kim B,
    3. Yang K-S, et al
    . Development and validation of visual grading system for stenosis in intracranial atherosclerotic disease on time-of-flight magnetic resonance angiography. Eur Radiol 2022;32:2781–90 doi:10.1007/s00330-021-08319-5 pmid:3483937
    CrossRefPubMed
  22. 22.↵
    1. Johnson KM
    . Neurovascular magnetic resonance angiography. In: Advances in Magnetic Resonance Technology and Applications. Volume 4, Chap 30. Elsevier; 2021:469–83
  23. 23.↵
    1. Ghahramani Z
    2. Welling M
    3. Cortes C, eds., et al
    1. Goodfellow I,
    2. Pouget-Abadie J,
    3. Mirza M, et al
    . Generative adversarial nets. In: Ghahramani Z Welling M Cortes C, eds., et al. Advances in Neural Information Processing Systems (NIPS 2014). December 8–13, 2014. Montreal, Quebec, Canada
  24. 24.↵
    1. Ravindran AV,
    2. Killingsworth MC,
    3. Bhaskar S
    . Cerebral collaterals in acute ischaemia: Implications for acute ischaemic stroke patients receiving reperfusion therapy. Eur J Neurosci 2021;53:1238–61 doi:10.1111/ejn.14955 pmid:32871623
    CrossRefPubMed
  25. 25.↵
    1. Wiegers EJ,
    2. Mulder MJ,
    3. Jansen IG, et al
    ; MR CLEAN Trial and MR CLEAN Registry Investigators. Clinical and imaging determinants of collateral status in patients with acute ischemic stroke in MR CLEAN trial and registry. Stroke 2020;51:1493–502 doi:10.1161/STROKEAHA.119.027483 pmid:32279619
    CrossRefPubMed
  26. 26.↵
    1. Kim B,
    2. You SH,
    3. Jung SC
    . A multicenter survey of acute stroke imaging protocols for endovascular thrombectomy. Neurointervention 2021;16:20–28 doi:10.5469/neuroint.2020.00199 pmid:33267533
    CrossRefPubMed
PreviousNext
Back to top
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Deep Learning–Based Synthetic TOF-MRA Generation Using Time-Resolved MRA in Fast Stroke Imaging
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Sung-Hye You, Yongwon Cho, Byungjun Kim, Kyung-Sook Yang, InSeong Kim, Bo Kyu Kim, Arim Pak, Sang Eun Park
Deep Learning–Based Synthetic TOF-MRA Generation Using Time-Resolved MRA in Fast Stroke Imaging
American Journal of Neuroradiology Nov 2023, DOI: 10.3174/ajnr.A8063

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Deep Learning–Based Synthetic TOF-MRA Generation Using Time-Resolved MRA in Fast Stroke Imaging
Sung-Hye You, Yongwon Cho, Byungjun Kim, Kyung-Sook Yang, InSeong Kim, Bo Kyu Kim, Arim Pak, Sang Eun Park
American Journal of Neuroradiology Nov 2023, DOI: 10.3174/ajnr.A8063
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref (4)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Robust resolution improvement of 3D UTE-MR angiogram of normal vasculatures using super-resolution convolutional neural network
    Abel Worku Tessema, Seokha Jin, Yelim Gong, HyungJoon Cho
    Scientific Reports 2025 15 1
  • Application of Artificial Intelligence in Acute Ischemic Stroke: A Scoping Review
    JoonNyung Heo
    Neurointervention 2025 20 1
  • Deep Learning-Based High-Resolution Magnetic Resonance Angiography (MRA) Generation Model for 4D Time-Resolved Angiography with Interleaved Stochastic Trajectories (TWIST) MRA in Fast Stroke Imaging
    Bo Kyu Kim, Sung-Hye You, Byungjun Kim, Jae Ho Shin
    Diagnostics 2024 14 11
  • Enhanced Preoperative Planning for Intracranial Aneurysms Through Multimodal Image Fusion of Silent/Time-of-Magnetic Resonance Angiography and Computed Tomography Using 3DSlicer
    Xiaolin Hou, Tao Wu, Dingjun Li, Yuan Yao, Lin Zeng
    The Neurologist 2024 29 6

More in this TOC Section

  • AI-Enhanced Photon-Counting CT of Temporal Bone
  • DIRDL for Inflammatory Myelopathies
  • An AI De-identification Method for Pediatric MRIs
Show more Artificial Intelligence

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire