Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Article CommentaryWHITE PAPER

Critical Appraisal of Artificial Intelligence–Enabled Imaging Tools Using the Levels of Evidence System

N. Pham, V. Hill, A. Rauschecker, Y. Lui, S. Niogi, C.G. Fillipi, P. Chang, G. Zaharchuk and M. Wintermark
American Journal of Neuroradiology April 2023, DOI: https://doi.org/10.3174/ajnr.A7850
N. Pham
aFrom the Department of Radiology (N.P., G.Z.), Stanford School of Medicine, Palo Alto, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for N. Pham
V. Hill
bDepartment of Radiology (V.H.), Northwestern University Feinberg School of Medicine, Chicago, Illinois
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for V. Hill
A. Rauschecker
cDepartment of Radiology (A.R.), University of California, San Francisco, San Francisco, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Rauschecker
Y. Lui
dDepartment of Radiology (Y.L.), NYU Grossman School of Medicine, New York, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Y. Lui
S. Niogi
eDepartment of Radiology (S.N.), Weill Cornell Medicine, New York, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S. Niogi
C.G. Fillipi
fDepartment of Radiology (C.G.F.), Tufts University School of Medicine, Boston, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C.G. Fillipi
P. Chang
gDepartment of Radiology (P.C.), University of California, Irvine, Irvine, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for P. Chang
G. Zaharchuk
aFrom the Department of Radiology (N.P., G.Z.), Stanford School of Medicine, Palo Alto, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for G. Zaharchuk
M. Wintermark
hDepartment of Neuroradiology (M.W.), The University of Texas MD Anderson Cancer Center, Houston, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Wintermark
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Zaharchuk G,
    2. Gong E,
    3. Wintermark M, et al
    . Deep learning in neuroradiology. AJNR Am J Neuroradiol 2018;39:1776–84 doi:10.3174/ajnr.A5543 pmid:29419402
    Abstract/FREE Full Text
  2. 2.↵
    1. Lui YW,
    2. Chang PD,
    3. Zaharchuk G, et al
    . Artificial intelligence in neuroradiology: current status and future directions. AJNR Am J Neuroradiol 2020;41:E52–59 doi:10.3174/ajnr.A6681 pmid:32732276
    Abstract/FREE Full Text
  3. 3.↵
    1. Bohr A,
    2. Memarzadeh K
    . The rise of artificial intelligence in healthcare applications. Artificial Intelligence in Healthcare. Cambridge, Massachusetts; Academic Press; 2020:25–60
  4. 4.↵
    1. van Leeuwen KG,
    2. de Rooij M,
    3. Schalekamp S, et al
    . How does artificial intelligence in radiology improve efficiency and health outcomes? Pediatr Radiol 2022;52:2087–93 doi:10.1007/s00247-021-05114-8 pmid:34117522
    CrossRefPubMed
  5. 5.↵
    Artificial intelligence and machine learning (AI/ML)-enabled medical devices. October 5, 2022. https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices. Accessed March 5, 2023
  6. 6.↵
    1. van Leeuwen KG,
    2. Schalekamp S,
    3. Rutten MJ, et al
    . Artificial intelligence in radiology: 100 commercially available products and their scientific evidence. Eur Radiol 2021;31:3 797–804 doi:10.1007/s00330-021-07892-z pmid:33856519
    CrossRefPubMed
  7. 7.↵
    1. Goergen SK,
    2. Frazer HM,
    3. Reddy S
    . Quality use of artificial intelligence in medical imaging: what do radiologists need to know? J Med Imaging Radiat Oncol 2022;66:225–32 doi:10.1111/1754-9485.13379 pmid:35243782
    CrossRefPubMed
  8. 8.↵
    1. Letourneau-Guillon L,
    2. Camirand D,
    3. Guilbert F, et al
    . Artificial intelligence applications for workflow, process optimization and predictive analytics. Neuroimaging Clin N Am 2020;30:e1–15 doi:10.1016/j.nic.2020.08.008 pmid:33039002
    CrossRefPubMed
  9. 9.↵
    1. Kitamura FC,
    2. Pan I,
    3. Ferraciolli SF, et al
    . Clinical artificial intelligence applications in radiology: Neuro. Radiol Clin North Am 2021;59:1003–12 doi:10.1016/j.rcl.2021.07.002 pmid:34689869
    CrossRefPubMed
  10. 10.↵
    1. Kaka H,
    2. Zhang E,
    3. Khan N
    . Artificial intelligence and deep learning in neuroradiology: exploring the new frontier. Can Assoc Radiol J 2021;72:35–44 doi:10.1177/0846537120954293 pmid:32946272
    CrossRefPubMed
  11. 11.↵
    1. Scott I,
    2. Carter S,
    3. Coiera E
    . Clinician checklist for assessing suitability of machine learning applications in healthcare. BMJ Health Care Inform 2021;28:e100251 doi:10.1136/bmjhci-2020-100251 pmid:33547086
    CrossRefPubMed
  12. 12.↵
    1. Burns PB,
    2. Rohrich RJ,
    3. Chung KC
    . The levels of evidence and their role in evidence-based medicine. Plast Reconstr Surg 2011;128:305–10 doi:10.1097/PRS.0b013e318219c171 pmid:21701348
    CrossRefPubMed
  13. 13.↵
    1. Willemink MJ,
    2. Koszek WA,
    3. Hardell C, et al
    . Preparing medical imaging data for machine learning. Radiology 2020;295:4–15 doi:10.1148/radiol.2020192224 pmid:32068507
    CrossRefPubMed
  14. 14.↵
    1. Mongan J,
    2. Moy L,
    3. Kahn CE
    . Checklist for artificial intelligence in medical imaging (CLAIM): a guide for authors and reviewers. Radiol Artif Intell 2020;2:e200029 doi:10.1148/ryai.2020200029 pmid:33937821
    CrossRefPubMed
  15. 15.↵
    1. Bluemke DA,
    2. Moy L,
    3. Bredella MA, et al
    . Assessing radiology research on artificial intelligence: a brief guide for authors, reviewers, and readers-from the radiology editorial board. Radiology 2020;294:487–89 doi:10.1148/radiol.2019192515 pmid:31891322
    CrossRefPubMed
  16. 16.↵
    1. Yu AC,
    2. Eng J
    . One algorithm may not fit all: how selection bias affects machine learning performance. Radiographics 2020;40:1932–39 doi:10.1148/rg.2020200040 pmid:32976062
    CrossRefPubMed
  17. 17.↵
    1. Hernandez-Boussard T,
    2. Bozkurt S,
    3. Ioannidis JP, et al
    . MINIMAR (MINimum information for medical AI reporting): developing reporting standards for artificial intelligence in health care. J Am Med Inform Assoc 2020;27:2011–15 doi:10.1093/jamia/ocaa088 pmid:32594179
    CrossRefPubMed
  18. 18.↵
    Radiology: Artificial intelligence. Checklist for Artificial Intelligence in Medical Imaging (CLAIM). https://pubs.rsna.org/page/ai/claim?doi=10.1148%2Fryai&publicationCode=ai. Accessed March 2, 2023
  19. 19.↵
    1. Liu X,
    2. Rivera SC,
    3. Moher D, et al
    . Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension. BMJ (Online) 2020;370:m3164 doi:10.1136/bmj.m3164
    Abstract/FREE Full Text
  20. 20.↵
    1. Park Y,
    2. Jackson GP,
    3. Foreman MA, et al
    . Evaluating artificial intelligence in medicine: phases of clinical research. JAMIA Open 2020;3:326–31 doi:10.1093/jamiaopen/ooaa033 pmid:33215066
    CrossRefPubMed
  21. 21.↵
    1. Jha A,
    2. Bradshaw T,
    3. Buvat I, et al
    . Best practices for evaluation of artificial intelligence-based algorithms for nuclear medicine: the RELIANCE guidelines. J Nucl Med 2022;63(Suppl 2):1725
  22. 22.↵
    1. Filice RW,
    2. Mongan J,
    3. Kohli MD
    . Evaluating artificial intelligence systems to guide purchasing decisions. J Am Coll Radiol 2020;17:1405–09 doi:10.1016/j.jacr.2020.09.045 pmid:33035503
    CrossRefPubMed
  23. 23.↵
    1. Krause J,
    2. Gulshan V,
    3. Rahimy E, et al
    . Grader variability and the importance of reference standards for evaluating machine learning models for diabetic retinopathy. Ophthalmology 2018;125:1264–72 doi:10.1016/j.ophtha.2018.01.034 pmid:29548646
    CrossRefPubMed
  24. 24.↵
    1. Duggan GE,
    2. Reicher JJ,
    3. Liu Y, et al
    . Improving reference standards for validation of AI-based radiography. Br J Radiol 2021;94:20210435 doi:10.1259/bjr.20210435 pmid:34142868
    CrossRefPubMed
  25. 25.↵
    1. Yu AC,
    2. Mohajer B,
    3. Eng J
    . External validation of deep learning algorithms for radiologic diagnosis: a systematic review. Radiol Artif Intell 2022;4:e210064 doi:10.1148/ryai.210064 pmid:35652114
    CrossRefPubMed
  26. 26.↵
    1. Kim DW,
    2. Jang HY,
    3. Kim KW, et al
    . Design characteristics of studies reporting the performance of artificial intelligence algorithms for diagnostic analysis of medical images: results from recently published papers. Korean J Radiol 2019;20:405–10 doi:10.3348/kjr.2019.0025 pmid:30799571
    CrossRefPubMed
  27. 27.↵
    1. Dunnmon J
    . Separating hope from hype: artificial intelligence pitfalls and challenges in radiology. Radiol Clin North Am 2021;59:1063–74 doi:10.1016/j.rcl.2021.07.006 pmid:34689874
    CrossRefPubMed
  28. 28.↵
    1. Vokinger KN,
    2. Feuerriegel S,
    3. Kesselheim AS
    . Mitigating bias in machine learning for medicine. Commun Med (Lond) 2021;1:25 doi:10.1038/s43856-021-00028-w pmid:34522916
    CrossRefPubMed
  29. 29.↵
    1. Kelly CJ,
    2. Karthikesalingam A,
    3. Suleyman M, et al
    . Key challenges for delivering clinical impact with artificial intelligence. BMC Med 2019;17:195 doi:10.1186/s12916-019-1426-2 pmid:31665002
    CrossRefPubMed
  30. 30.↵
    1. He J,
    2. Baxter SL,
    3. Xu J, et al
    . The practical implementation of artificial intelligence technologies in medicine. Nat Med 2019;25:30–36 doi:10.1038/s41591-018-0307-0 pmid:30617336
    CrossRefPubMed
  31. 31.↵
    1. Park SH,
    2. Han K
    . Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction. Radiology 2018;286:800–09 doi:10.1148/radiol.2017171920 pmid:29309734
    CrossRefPubMed
  32. 32.↵
    1. Wolff J,
    2. Pauling J,
    3. Keck A, et al
    . Success factors of artificial intelligence implementation in healthcare. Front Digit Health 2021;3:594971 doi:10.3389/fdgth.2021.594971 pmid:34713083
    CrossRefPubMed
  33. 33.↵
    1. Omoumi P,
    2. Ducarouge A,
    3. Tournier A, et al
    . To buy or not to buy: evaluating commercial AI solutions in radiology (the ECLAIR guidelines). Eur Radiol 2021;31:3786–96 doi:10.1007/s00330-020-07684-x pmid:33666696
    CrossRefPubMed
  34. 34.↵
    1. DeCamp M,
    2. Lindvall C
    . Latent bias and the implementation of artificial intelligence in medicine. J Am Med Inform Asso. 2020;27:2020–23 doi:10.1093/jamia/ocaa094 pmid:32574353
    CrossRefPubMed
  35. 35.↵
    1. Finlayson SG,
    2. Subbaswamy A,
    3. Singh K, et al
    . The clinician and dataset shift in artificial intelligence. N Engl J Med 2021;385:283–86 doi:10.1056/NEJMc2104626 pmid:34260843
    CrossRefPubMed
  36. 36.↵
    1. Geis JR,
    2. Brady AP,
    3. Wu CC, et al
    . Ethics of artificial intelligence in radiology: summary of the Joint European and North American Multisociety Statement. Radiology 2019;293:436–40 doi:10.1148/radiol.2019191586
    CrossRefPubMed
  37. 37.↵
    1. Liu X,
    2. Glocker B,
    3. McCradden MM, et al
    . The medical algorithmic audit. Lancet Digit Health .2022;4:e384–97 doi:10.1016/S2589-7500(22)00003-6 pmid:35396183
    CrossRefPubMed
  38. 38.↵
    1. Vollmer S,
    2. Mateen BA,
    3. Bohner G, et al
    . Machine learning and artificial intelligence research for patient benefit: 20 critical questions on transparency, replicability, ethics, and effectiveness. BMJ 2020;368:l6927 doi:10.1136/bmj.l6927 pmid:32198138
    FREE Full Text
  39. 39.↵
    1. Spilseth B,
    2. McKnight CD,
    3. Li MD, et al
    . AUR-RRA review: logistics of academic-industry partnerships in artificial intelligence. Acad Radiol 2022;29:119–28 doi:10.1016/j.acra.2021.08.002 pmid:34561163
    CrossRefPubMed
  40. 40.↵
    FDA-regulated AI algorithms: trends, strengths, and gaps of validation studies. Acad Radiol 2022;29:559–66 doi:10.1016/j.acra.2021.09.002 pmid:34969610
    CrossRefPubMed
  41. 41.↵
    1. Pianykh OS,
    2. Langs G,
    3. Dewey M, et al
    . Continuous learning AI in radiology: implementation principles and early applications. Radiology 2020;297:6–14 doi:10.1148/radiol.2020200038 pmid:32840473
    CrossRefPubMed
  42. 42.↵
    1. Genereaux B,
    2. O'Donnell K,
    3. Bialecki B, et al
    . IHE radiology white paper: AI interoperability in imaging. Integrating the Healthcare Enterprise 2021;1:????? https://www.ihe.net/uploadedFiles/Documents/Radiology/IHE_RAD_White_Paper_AI_Interoperability_in_Imaging.pdf. Accessed March 3, 2023
  43. 43.↵
    1. Wiggins WF,
    2. Magudia K,
    3. Schmidt TMS, et al
    . Imaging AI in practice: a demonstration of future workflow using integration standards. Radiol Artif Intell 2021;3:e210152 doi:10.1148/ryai.2021210152 pmid:34870224
    CrossRefPubMed
  44. 44.↵
    1. Kirchner JE,
    2. Smith JL,
    3. Powell BJ, et al
    . Getting a clinical innovation into practice: an introduction to implementation strategies. Psychiatry Res 2020;283:112467 doi:10.1016/j.psychres.2019.06.042 pmid:31488332
    CrossRefPubMed
  45. 45.↵
    1. Porter ME
    . What is value in health care? N Engl J Med 2010;363:2477–81 doi:10.1056/NEJMp1011024
    CrossRefPubMedWeb of Science
  46. 46.↵
    1. Brady AP,
    2. Visser J,
    3. Frija G, et al
    . Value-based radiology: what is the ESR doing, and what should we do in the future? Insights Imaging 2021;12:108 doi:10.1186/s13244-021-01056-9
    CrossRef
  47. 47.↵
    1. Teisberg E,
    2. Wallace S,
    3. O’Hara S
    . Defining and implementing value-based health care: a strategic framework. Acad Med 2020;95:682–85 doi:10.1097/ACM.0000000000003122 pmid:31833857
    CrossRefPubMed
  48. 48.↵
    1. Plana D,
    2. Shung DL,
    3. Grimshaw AA, et al
    . Randomized clinical trials of machine learning interventions in health care: a systematic review. JAMA Netw Open 2022;5:e2233946 doi:10.1001/jamanetworkopen.2022.33946 pmid:36173632
    CrossRefPubMed
  49. 49.↵
    1. Wilkinson J,
    2. Arnold KF,
    3. Murray EJ, et al
    . Time to reality check the promises of machine learning-powered precision medicine. Lancet Digit Health 2020;2:e677–80 doi:10.1016/S2589-7500(20)30200-4 pmid:33328030
    CrossRefPubMed
  50. 50.↵
    1. Campbell BC,
    2. Mitchell PJ,
    3. Kleinig TJ, et al
    ; EXTEND-IA Investigators. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med 2015;372:1009–18 doi:10.1056/NEJMoa1414792 pmid:25671797
    CrossRefPubMed
  51. 51.↵
    1. Soun JE,
    2. Chow DS,
    3. Nagamine M, et al
    . Artificial intelligence and acute stroke imaging. AJNR Am J Neuroradiol 2021;42:2–11 doi:10.3174/ajnr.A6883 pmid:33243898
    Abstract/FREE Full Text
  52. 52.↵
    1. Albers GW,
    2. Marks MP,
    3. Kemp S, et al
    ; DEFUSE 3 Investigators. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med 2018;378:708–18 doi:10.1056/NEJMoa1713973 pmid:29364767
    CrossRefPubMed
  53. 53.↵
    1. Ma H,
    2. Campbell BC,
    3. Parsons MW, et al
    ; EXTEND Investigators. Thrombolysis guided by perfusion imaging up to 9 hours after onset of stroke. N Engl J Med 2019;380:1795–803 doi:10.1056/NEJMoa1813046 pmid:31067369
    CrossRefPubMed
  54. 54.↵
    1. van Leeuwen KG,
    2. Meijer FJ,
    3. Schalekamp S, et al
    . Cost-effectiveness of artificial intelligence aided vessel occlusion detection in acute stroke: an early health technology assessment. Insights Imaging 2021;12:133 doi:10.1186/s13244-021-01077-4 pmid:34564764
    CrossRefPubMed
  55. 55.
    1. Heit JJ,
    2. Honce JM,
    3. Yedavalli VS, et al
    . RAPID aneurysm: artificial intelligence for unruptured cerebral aneurysm detection on CT angiography. J Stroke Cerebrovasc Dis 2022;31:106690 doi:10.1016/j.jstrokecerebrovasdis.2022.106690 pmid:35933764
    CrossRefPubMed
  56. 56.
    1. Sahlein DH,
    2. Gibson D,
    3. Scott JA, et al
    . Artificial intelligence aneurysm measurement tool finds growth in all aneurysms that ruptured during conservative management. J Neurointerv Surg 2022 Sep 30. [Epub ahead of print] doi:10.1136/jnis-2022-019339 pmid:36180207
    CrossRefPubMed
PreviousNext
Back to top
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Critical Appraisal of Artificial Intelligence–Enabled Imaging Tools Using the Levels of Evidence System
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
N. Pham, V. Hill, A. Rauschecker, Y. Lui, S. Niogi, C.G. Fillipi, P. Chang, G. Zaharchuk, M. Wintermark
Critical Appraisal of Artificial Intelligence–Enabled Imaging Tools Using the Levels of Evidence System
American Journal of Neuroradiology Apr 2023, DOI: 10.3174/ajnr.A7850

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Critical Appraisal of Artificial Intelligence–Enabled Imaging Tools Using the Levels of Evidence System
N. Pham, V. Hill, A. Rauschecker, Y. Lui, S. Niogi, C.G. Fillipi, P. Chang, G. Zaharchuk, M. Wintermark
American Journal of Neuroradiology Apr 2023, DOI: 10.3174/ajnr.A7850
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Outcomes of Radiologist Recommendations for Temporal Bone CT to Assess Superior Semicircular Canal Dehiscence on Temporal Bone MRI
  • Empowering Data Sharing in Neuroscience: A Deep Learning Deidentification Method for Pediatric Brain MRIs
  • Automated Detection of Steno-Occlusive Lesion on Time-of-Flight MR Angiography: An Observer Performance Study
  • Postoperative Karnofsky performance status prediction in patients with IDH wild-type glioblastoma: a multimodal approach integrating clinical and deep imaging features
  • A Siamese U-Transformer for change detection on MRI brain for multiple sclerosis, a model development and external validation study
  • A Radiomic "Warning Sign" of Progression on Brain MRI in Individuals with MS
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Amyloid Imaging Abnormalities in Alzheimer’s
  • The Updated Neuroradiology Milestones: Synapsing from 1.0 to 2.0
Show more WHITE PAPER

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire