Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleAdult Brain
Open Access

Radiomics-Based Machine Learning for Outcome Prediction in a Multicenter Phase II Study of Programmed Death-Ligand 1 Inhibition Immunotherapy for Glioblastoma

E. George, E. Flagg, K. Chang, H.X. Bai, H.J. Aerts, M. Vallières, D.A. Reardon and R.Y. Huang
American Journal of Neuroradiology April 2022, DOI: https://doi.org/10.3174/ajnr.A7488
E. George
aFrom the Department of Radiology and Biomedical Imaging (E.G.), University of California San Francisco, San Francisco, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for E. George
E. Flagg
bDepartment of Radiology (E.F., R.Y.H.), Brigham and Women’s Hospital, Boston, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for E. Flagg
K. Chang
cMassachusetts Institute of Technology (K.C.), Cambridge, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for K. Chang
H.X. Bai
dDepartment of Diagnostic Imaging (H.X.B.), Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for H.X. Bai
H.J. Aerts
eArtificial Intelligence in Medicine Program (H.J.A.), Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
fDepartments of Radiation Oncology and Radiology (H.J.A.), Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for H.J. Aerts
M. Vallières
gDepartment of Computer Science (M.V.), Université de Sherbrooke, Sherbrooke, Quebec, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Vallières
D.A. Reardon
hCenter for Neuro Oncology (D.A.R.), Dana-Farber Cancer Institute, Boston, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for D.A. Reardon
R.Y. Huang
bDepartment of Radiology (E.F., R.Y.H.), Brigham and Women’s Hospital, Boston, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for R.Y. Huang
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Ostrom QT,
    2. Cioffi G,
    3. Gittleman H, et al
    . CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2012-2016. Neuro Oncol 2019;21:v1–100 doi:10.1093/neuonc/noz150 pmid:31675094
    CrossRefPubMed
  2. 2.↵
    1. Stupp R,
    2. Hegi ME,
    3. Mason WP, et al
    ; European Organisation for Research and Treatment of Cancer Brain Tumour and Radiation Oncology Groups; National Cancer Institute of Canada Clinical Trials Group. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 2009;10:459–66 doi:10.1016/S1470-2045(09)70025-7 pmid:19269895
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Lombardi G,
    2. Pambuku A,
    3. Bellu L, et al
    . Effectiveness of antiangiogenic drugs in glioblastoma patients: a systematic review and meta-analysis of randomized clinical trials. Crit Rev Oncol Hematol 2017;111:94–102 doi:10.1016/j.critrevonc.2017.01.018 pmid:28259301
    CrossRefPubMed
  4. 4.↵
    1. Wainwright DA,
    2. Chang AL,
    3. Dey M, et al
    . Durable therapeutic efficacy utilizing combinatorial blockade against IDO, CTLA-4, and PD-L1 in mice with brain tumors. Clin Cancer Res 2014;20:5290–301 doi:10.1158/1078-0432.CCR-14-0514 pmid:24691018
    Abstract/FREE Full Text
  5. 5.↵
    1. Zeng J,
    2. See AP,
    3. Phallen J, et al
    . Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys 2013;86:343–49 doi:10.1016/j.ijrobp.2012.12.025 pmid:23462419
    CrossRefPubMed
  6. 6.↵
    Bristol-Myers Squibb Announces Phase 3 CheckMate-498 Study Did Not Meet Primary Endpoint of Overall Survival with Opdivo (nivolumab) Plus Radiation in Patients with Newly Diagnosed MGMT-Unmethylated Glioblastoma Multiforme. https://news.bms.com/press-release/corporatefinancial-news/bristol-myers-squibb-announces-phase-3-checkmate-498-study-did. May 9, 2019. Accessed March 30, 2020
  7. 7.↵
    Bristol-Myers Squibb Provides Update on Phase 3 Opdivo (nivolumab) CheckMate-548 Trial in Patients with Newly Diagnosed MGMT-Methylated Glioblastoma Multiforme. https://news.bms.com/press-release/corporatefinancial-news/bristol-myers-squibb-provides-update-phase-3-opdivo-nivolumab-. September 5, 2019. Accessed March 30, 2020.
  8. 8.↵
    1. Reardon DA,
    2. Brandes AA,
    3. Omuro A, et al
    . Effect of nivolumab vs bevacizumab in patients with recurrent glioblastoma: the CheckMate 143 Phase 3 randomized clinical trial. JAMA Oncol 2020;6:1003–10 doi:10.1001/jamaoncol.2020.1024 pmid:32437507
    CrossRefPubMed
  9. 9.↵
    1. Reardon DA,
    2. Kaley TJ,
    3. Dietrich J, et al
    . Phase 2 study to evaluate safety and efficacy of MEDI4736 (durvalumab [DUR]) in glioblastoma (GBM) patients: an update. J Clin Oncol 2017;35:2042 doi:10.1200/JCO.2017.35.15_suppl.2042
    CrossRef
  10. 10.↵
    1. Huang RY,
    2. Wen PY
    . Response assessment in neuro-oncology criteria and clinical endpoints. Magn Reson Imaging Clin N Am 2016;24:705–18 doi:10.1016/j.mric.2016.06.003 pmid:27742111
    CrossRefPubMed
  11. 11.↵
    1. Okada H,
    2. Weller M,
    3. Huang R, et al
    . Immunotherapy response assessment in neuro-oncology: a report of the RANO working group. Lancet Oncol 2015;16: e534–42 doi:10.1016/S1470-2045(15)00088-1 pmid:26545842
    CrossRefPubMed
  12. 12.↵
    1. Reardon DA,
    2. Omuro A,
    3. Brandes AA, et al
    . OS10.3 randomized Phase 3 study evaluating the efficacy and safety of nivolumab vs bevacizumab in patients with recurrent glioblastoma: CheckMate 143. Neuro Oncol 2017;19:iii21 doi:10.1093/neuonc/nox036.071
    CrossRef
  13. 13.↵
    Phase 2 Study of Durvalumab (MEDI4736) in Patients With Glioblastoma. https://clinicaltrials.gov/ct2/show/NCT02336165. Accessed February 1, 2022
  14. 14.↵
    1. Reardon DA,
    2. Kaley TJ,
    3. Dietrich J, et al
    . Phase II study to evaluate safety and efficacy of MEDI4736 (durvalumab) + radiotherapy in patients with newly diagnosed unmethylated MGMT glioblastoma (new unmeth GBM). J Clin Oncol 2019;37(15 Suppl):2032 doi:10.1200/JCO.2019.37.15_suppl.2032
    CrossRef
  15. 15.↵
    1. Zwanenburg A,
    2. Leger S,
    3. Vallieres M, et al
    . Image biomarker standardisation initiative. https://arxiv.org/abs/1612.07003. December 2, 2016. Accessed February 1, 2022
  16. 16.↵
    Documentation/Nightly/Modules/SwissSkullStripper. https://www.slicer.org/wiki/Documentation/Nightly/Modules/SwissSkullStripper. Accessed February 1, 2022
  17. 17.↵
    1. Chang K,
    2. Zhang B,
    3. Guo X, et al
    . Multimodal imaging patterns predict survival in recurrent glioblastoma patients treated with bevacizumab. Neuro Oncol 2016;18:1680–87 doi:10.1093/neuonc/now086 pmid:27257279
    CrossRefPubMed
  18. 18.↵
    1. Vallières M,
    2. Freeman CR,
    3. Skamene SR, et al
    . A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol 2015;60:5471–96 doi:10.1088/0031-9155/60/14/5471 pmid:26119045
    CrossRefPubMed
  19. 19.↵
    1. Vallieres M,
    2. Kay-Rivest E,
    3. Perrin LJ, et al
    . Radiomics strategies for risk assessment of tumour failure in head-and-neck cancer. Sci Rep 2017;7:10117 doi:10.1038/s41598-017-10371-5 pmid:28860628
    CrossRefPubMed
  20. 20.↵
    A repository to develop code for IBSI compliant radiomics applications. https://github.com/mvallieres/radiomics-develop. Accessed April 26, 2020
  21. 21.↵
    1. Ishwaran H,
    2. Kogalur UB,
    3. Blackstone EH, et al
    . Random survival forests. Annals of Applied Statistics 2008;2:841–60
  22. 22.↵
    scikit-survival. https://scikit-survival.readthedocs.io/en/stable/. Accessed February 1, 2022
  23. 23.↵
    1. Hung H,
    2. Chiang C
    . Estimation methods for time-dependent AUC models with survival data. The Canadian Journal of Statistics 2009;38:8–26
  24. 24.↵
    1. Rundo F,
    2. Spampinato C,
    3. Banna GL, et al
    . Advanced deep learning embedded motion radiomics pipeline for predicting anti-PD-1/PD-L1 immunotherapy response in the treatment of bladder cancer: preliminary results. Electronics 2019;8:1134 doi:10.3390/electronics8101134
    CrossRef
  25. 25.↵
    1. Jazieh K,
    2. Khorrami M,
    3. Saad AM, et al
    . Novel imaging biomarkers predict progression-free survival in stage 3 NSCLC treated with chemoradiation and durvalumab. J Clin Oncol 2021;39(15 Suppl):3054–54 doi:10.1200/JCO.2021.39.15_suppl.3054
    CrossRef
  26. 26.↵
    1. Sforazzini F,
    2. Salome P,
    3. Kudak A, et al
    . PD-L1-R: A MR based surrogate for PD-L1 expression in glioblastoma multiforme. J Clin Oncol 2021;39:2041 doi:10.1200/JCO.2021.39.15_suppl.2041
    CrossRef
  27. 27.↵
    1. Lotan E,
    2. Jain R,
    3. Razavian N, et al
    . State of the art: machine learning applications in glioma imaging. AJR Am J Roentgenol 2019;212:26–37 doi:10.2214/AJR.18.20218 pmid:30332296
    CrossRefPubMed
  28. 28.↵
    1. Sengupta A,
    2. Ramaniharan AK,
    3. Gupta RK, et al
    . Glioma grading using a machine-learning framework based on optimized features obtained from T1 perfusion MRI and volumes of tumor components. J Magn Reson Imaging 2019;50:1295–1306 doi:10.1002/jmri.26704 pmid:30895704
    CrossRefPubMed
  29. 29.↵
    1. Zhang B,
    2. Chang K,
    3. Ramkissoon S, et al
    . Multimodal MRI features predict isocitrate dehydrogenase genotype in high-grade gliomas. Neuro Oncol 2017;19:109–17 doi:10.1093/neuonc/now121 pmid:27353503
    CrossRefPubMed
  30. 30.↵
    1. Chang K,
    2. Beers AL,
    3. Bai HX, et al
    . Automatic assessment of glioma burden: a deep learning algorithm for fully automated volumetric and bidimensional measurement. Neuro Oncol 2019;21:1412–22 doi:10.1093/neuonc/noz106 pmid:31190077
    CrossRefPubMed
  31. 31.↵
    1. Macyszyn L,
    2. Akbari H,
    3. Pisapia JM, et al
    . Imaging patterns predict patient survival and molecular subtype in glioblastoma via machine learning techniques. Neuro Oncol 2016;18:417–25 doi:10.1093/neuonc/nov127 pmid:26188015
    CrossRefPubMed
  32. 32.↵
    1. Sanghani P,
    2. Ang BT,
    3. King NK, et al
    . Overall survival prediction in glioblastoma multiforme patients from volumetric, shape and texture features using machine learning. Surg Oncol 2018;27:709–14 doi:10.1016/j.suronc.2018.09.002 pmid:30449497
    CrossRefPubMed
  33. 33.↵
    1. Kickingereder P,
    2. Burth S,
    3. Wick A, et al
    . Radiomic profiling of glioblastoma: identifying an imaging predictor of patient survival with improved performance over established clinical and radiologic risk models. Radiology 2016;280:880–89 doi:10.1148/radiol.2016160845 pmid:27326665
    CrossRefPubMed
  34. 34.↵
    1. Grossmann P,
    2. Narayan V,
    3. Chang K, et al
    . Quantitative imaging biomarkers for risk stratification of patients with recurrent glioblastoma treated with bevacizumab. Neuro Oncol 2017;19:1688–97 doi:10.1093/neuonc/nox092 pmid:28499022
    CrossRefPubMed
  35. 35.↵
    1. Kickingereder P,
    2. Gotz M,
    3. Muschelli J, et al
    . Large-scale radiomic profiling of recurrent glioblastoma identifies an imaging predictor for stratifying anti-angiogenic treatment response. Clin Cancer Res 2016;22:5765–71 doi:10.1158/1078-0432.CCR-16-0702 pmid:27803067
    Abstract/FREE Full Text
  36. 36.↵
    1. Wang C,
    2. Sun W,
    3. Kirkpatrick J, et al
    . Assessment of concurrent stereotactic radiosurgery and bevacizumab treatment of recurrent malignant gliomas using multi-modality MRI imaging and radiomics analysis. J Radiosurg SBRT 2018;5:171–81 pmid:29988289
    PubMed
  37. 37.↵
    1. Nie D,
    2. Lu J,
    3. Zhang H, et al
    . Multi-channel 3D deep feature learning for survival time prediction of brain tumor patients using multi-modal neuroimages. Sci Rep 2019;9:1103 doi:10.1038/s41598-018-37387-9 pmid:30705340
    CrossRefPubMed
  38. 38.↵
    1. Zhao J,
    2. Chen AX,
    3. Gartrell RD, et al
    . Immune and genomic correlates of response to anti-PD-1 immunotherapy in glioblastoma. Nat Med 2019;25:462–69 doi:10.1038/s41591-019-0349-y pmid:30742119
    CrossRefPubMed
  39. 39.↵
    1. Lipson EJ,
    2. Forde PM,
    3. Hammers HJ, et al
    . Antagonists of PD-1 and PD-L1 in cancer treatment. Semin Oncol 2015;42:587–600 doi:10.1053/j.seminoncol.2015.05.013 pmid:26320063
    CrossRefPubMed
  40. 40.↵
    1. De Felice F,
    2. Pranno N,
    3. Marampon F, et al
    . Immune check-point in glioblastoma multiforme. Crit Rev Oncol Hematol 2019;138:60–69 doi:10.1016/j.critrevonc.2019.03.019 pmid:31092387
    CrossRefPubMed
  41. 41.↵
    1. Burugu S,
    2. Dancsok AR,
    3. Nielsen TO
    . Emerging targets in cancer immunotherapy. Semin Cancer Biol 2018;52:39–52 doi:10.1016/j.semcancer.2017.10.001 pmid:28987965
    CrossRefPubMed
PreviousNext
Back to top
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Radiomics-Based Machine Learning for Outcome Prediction in a Multicenter Phase II Study of Programmed Death-Ligand 1 Inhibition Immunotherapy for Glioblastoma
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
E. George, E. Flagg, K. Chang, H.X. Bai, H.J. Aerts, M. Vallières, D.A. Reardon, R.Y. Huang
Radiomics-Based Machine Learning for Outcome Prediction in a Multicenter Phase II Study of Programmed Death-Ligand 1 Inhibition Immunotherapy for Glioblastoma
American Journal of Neuroradiology Apr 2022, DOI: 10.3174/ajnr.A7488

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Radiomics-Based Machine Learning for Outcome Prediction in a Multicenter Phase II Study of Programmed Death-Ligand 1 Inhibition Immunotherapy for Glioblastoma
E. George, E. Flagg, K. Chang, H.X. Bai, H.J. Aerts, M. Vallières, D.A. Reardon, R.Y. Huang
American Journal of Neuroradiology Apr 2022, DOI: 10.3174/ajnr.A7488
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • A Scoping Review of Artificial Intelligence Applications in Clinical Trial Risk Assessment
  • Imaging Genomics of Glioma Revisited: Analytic Methods to Understand Spatial and Temporal Heterogeneity
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • NCCT vs. MRI for Brain Atrophy in Acute Stroke
  • Clinical Outcomes After Chiari I Decompression
Show more Adult Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire