Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleSpine Imaging and Spine Image-Guided Interventions

Super-Resolution in Clinically Available Spinal Cord MRIs Enables Automated Atrophy Analysis

Blake E. Dewey, Samuel W. Remedios, Muraleetharan Sanjayan, Nicole Bou Rjeily, Alexandra Zambriczki Lee, Chelsea Wyche, Safiya Duncan, Jerry L. Prince, Peter A. Calabresi, Kathryn C. Fitzgerald and Ellen M. Mowry
American Journal of Neuroradiology April 2025, 46 (4) 823-831; DOI: https://doi.org/10.3174/ajnr.A8526
Blake E. Dewey
aFrom the Department of Neurology (B.E.D., M.S., N.B.R., A.Z.L., C.W., S.D., P.A.C., K.C.F., E.M.M.), Johns Hopkins University, Baltimore, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Blake E. Dewey
Samuel W. Remedios
bDepartment of Computer Science (S.W.R.), Johns Hopkins University, Baltimore, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Samuel W. Remedios
Muraleetharan Sanjayan
aFrom the Department of Neurology (B.E.D., M.S., N.B.R., A.Z.L., C.W., S.D., P.A.C., K.C.F., E.M.M.), Johns Hopkins University, Baltimore, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nicole Bou Rjeily
aFrom the Department of Neurology (B.E.D., M.S., N.B.R., A.Z.L., C.W., S.D., P.A.C., K.C.F., E.M.M.), Johns Hopkins University, Baltimore, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alexandra Zambriczki Lee
aFrom the Department of Neurology (B.E.D., M.S., N.B.R., A.Z.L., C.W., S.D., P.A.C., K.C.F., E.M.M.), Johns Hopkins University, Baltimore, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chelsea Wyche
aFrom the Department of Neurology (B.E.D., M.S., N.B.R., A.Z.L., C.W., S.D., P.A.C., K.C.F., E.M.M.), Johns Hopkins University, Baltimore, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Safiya Duncan
aFrom the Department of Neurology (B.E.D., M.S., N.B.R., A.Z.L., C.W., S.D., P.A.C., K.C.F., E.M.M.), Johns Hopkins University, Baltimore, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jerry L. Prince
cDepartment of Electrical and Computer Engineering (J.L.P.), Johns Hopkins University, Baltimore, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Peter A. Calabresi
aFrom the Department of Neurology (B.E.D., M.S., N.B.R., A.Z.L., C.W., S.D., P.A.C., K.C.F., E.M.M.), Johns Hopkins University, Baltimore, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Peter A. Calabresi
Kathryn C. Fitzgerald
aFrom the Department of Neurology (B.E.D., M.S., N.B.R., A.Z.L., C.W., S.D., P.A.C., K.C.F., E.M.M.), Johns Hopkins University, Baltimore, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ellen M. Mowry
aFrom the Department of Neurology (B.E.D., M.S., N.B.R., A.Z.L., C.W., S.D., P.A.C., K.C.F., E.M.M.), Johns Hopkins University, Baltimore, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Wattjes MP,
    2. Steenwijk MD,
    3. Stangel M
    . MRI in the diagnosis and monitoring of multiple sclerosis: an update. Clin Neuroradiol 2015;25 Suppl 2:157–65 doi:10.1007/s00062-015-0430-y pmid:26198879
    CrossRefPubMed
  2. 2.↵
    1. Pretorius PM,
    2. Quaghebeur G
    . The role of MRI in the diagnosis of MS. Clin Radiology 2003;58:434–48 doi:10.1016/s0009-9260(03)00089-8 pmid:12788312
    CrossRefPubMed
  3. 3.↵
    1. Wattjes MP,
    2. Ciccarelli O,
    3. Reich DS
    ; North American Imaging in Multiple Sclerosis Cooperative MRI Guidelines Working Group, et al. 2021 MAGNIMS–CMSC–NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis. Lancet Neurol 2021;20:653–70 doi:10.1016/S1474-4422(21)00095-8 pmid:34139157
    CrossRefPubMed
  4. 4.↵
    1. Thompson AJ,
    2. Banwell BL,
    3. Barkhof F, et al
    . Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 2018;17:162–73 doi:10.1016/S1474-4422(17)30470-2 pmid:29275977
    CrossRefPubMed
  5. 5.↵
    1. Cortese R,
    2. Giorgio A,
    3. Severa G, et al
    . MRI prognostic factors in multiple sclerosis, neuromyelitis optica spectrum disorder, and myelin oligodendrocyte antibody disease. Front Neurol 2021;12:679881 doi:10.3389/fneur.2021.679881 pmid:34867701
    CrossRefPubMed
  6. 6.↵
    1. Kaunzner UW,
    2. Gauthier SA
    . MRI in the assessment and monitoring of multiple sclerosis: an update on best practice. Ther Adv Neurol Disord 2017;10:247–61 doi:10.1177/1756285617708911 pmid:28607577
    CrossRefPubMed
  7. 7.↵
    1. Hemond CC,
    2. Bakshi R
    . Magnetic resonance imaging in multiple sclerosis. Cold Spring Harb Perspect Med 2018;8:a028969
    Abstract/FREE Full Text
  8. 8.↵
    1. Chen Y,
    2. Haacke EM,
    3. Bernitsas E
    . Imaging of the spinal cord in multiple sclerosis: past, present, future. Brain Sci 2020;10:857 doi:10.3390/brainsci10110857
    CrossRefPubMed
  9. 9.↵
    1. Cohen AB,
    2. Neema M,
    3. Arora A, et al
    . The relationships among MRI-defined spinal cord involvement, brain involvement, and disability in multiple sclerosis. J Neuroimaging 2012;22:122–28 doi:10.1111/j.1552-6569.2011.00589.x pmid:21447024
    CrossRefPubMedWeb of Science
  10. 10.↵
    1. Zeydan B,
    2. Gu X,
    3. Atkinson EJ, et al
    . Cervical spinal cord atrophy: an early marker of progressive MS onset. Neurol Neuroimmunol Neuroinflamm 2018;5:e435 doi:10.1212/NXI.0000000000000435 pmid:29435472
    Abstract/FREE Full Text
  11. 11.↵
    1. Bischof A,
    2. Papinutto N,
    3. Keshavan A
    ; University of California, San Francisco MS-EPIC Team, et al. Spinal cord atrophy predicts progressive disease in relapsing multiple sclerosis. Ann Neurol 2022;91:268–81 doi:10.1002/ana.26281 pmid:34878197
    CrossRefPubMed
  12. 12.↵
    1. Muccilli A,
    2. Seyman E,
    3. Oh J
    . Spinal cord MRI in multiple sclerosis. Neurol Clin 2018;36:35–57 doi:10.1016/j.ncl.2017.08.009 pmid:29157403
    CrossRefPubMed
  13. 13.↵
    1. Daams M,
    2. Weiler F,
    3. Steenwijk MD, et al
    . Mean upper cervical cord area (MUCCA) measurement in long-standing multiple sclerosis: relation to brain findings and clinical disability. Mult Scler 2014;20:1860–65 doi:10.1177/1352458514533399 pmid:24812042
    CrossRefPubMed
  14. 14.↵
    1. Weeda MM,
    2. Middelkoop SM,
    3. Steenwijk MD, et al
    . Validation of mean upper cervical cord area (MUCCA) measurement techniques in multiple sclerosis (MS): high reproducibility and robustness to lesions, but large software and scanner effects. Neuroimage Clin 2019;24:101962 doi:10.1016/j.nicl.2019.101962 pmid:31416017
    CrossRefPubMed
  15. 15.↵
    1. Chien C,
    2. Juenger V,
    3. Scheel M, et al
    . Considerations for mean upper cervical cord area implementation in a longitudinal MRI setting: methods, interrater reliability, and MRI quality control. AJNR Am J Neuroradiol 2020;41:343–50 doi:10.3174/ajnr.A6394 pmid:31974079
    Abstract/FREE Full Text
  16. 16.↵
    1. Cohen-Adad J,
    2. Alonso-Ortiz E,
    3. Abramovic M, et al
    . Generic acquisition protocol for quantitative MRI of the spinal cord. Nat Protoc 2021;16:4611–32 doi:10.1038/s41596-021-00588-0 pmid:34400839
    CrossRefPubMed
  17. 17.↵
    1. Valošek J,
    2. Cohen-Adad J
    . Reproducible spinal cord quantitative MRI analysis with the spinal cord toolbox. Magn Reson Med Sci 2024;23:307–15 doi:10.2463/mrms.rev.2023-0159 pmid:38479843
    CrossRefPubMed
  18. 18.↵
    1. Liu Y,
    2. Lukas C,
    3. Steenwijk MD, et al
    . Multicenter validation of mean upper cervical cord area measurements from head 3D T1-weighted MR imaging in patients with multiple sclerosis. AJNR Am J Neuroradiol 2016;37:749–54 doi:10.3174/ajnr.A4635 pmid:26659338
    Abstract/FREE Full Text
  19. 19.↵
    1. Taheri K,
    2. Vavasour IM,
    3. Abel S, et al
    . Cervical spinal cord atrophy can be accurately quantified using head images. Mult Scler J Exp Transl Clin 2022;8:20552173211070760 doi:10.1177/20552173211070760 pmid:35024164
    CrossRefPubMed
  20. 20.↵
    1. Saslow L,
    2. Li DKB,
    3. Halper J, et al
    . An international standardized magnetic resonance imaging protocol for diagnosis and follow-up of patients with multiple sclerosis: advocacy, dissemination, and implementation strategies. Int J MS Care 2020;22:226–32 doi:10.7224/1537-2073.2020-094 pmid:33177959
    CrossRefPubMed
  21. 21.↵
    1. Nagel SJ,
    2. Reddy CG,
    3. Frizon LA, et al
    . Spinal dura mater: biophysical characteristics relevant to medical device development. J Med Eng Technol 2018;42:128–39 doi:10.1080/03091902.2018.1435745 pmid:29569970
    CrossRefPubMed
  22. 22.↵
    1. Zhao C,
    2. Dewey BE,
    3. Pham DL, et al
    . SMORE: a self-supervised anti-aliasing and super-resolution algorithm for MRI using deep learning. IEEE Trans Med Imaging 2021;40:805–17 doi:10.1109/TMI.2020.3037187 pmid:33170776
    CrossRefPubMed
  23. 23.↵
    1. Wolterink JM,
    2. Svoboda D,
    3. Zhao C, et al.
    1. Remedios SW,
    2. Han S,
    3. Zuo L, et al
    . Self-supervised super-resolution for anisotropic MR images with and without slice gap. In: Wolterink JM, Svoboda D, Zhao C, et al., eds. Simulation and Synthesis in Medical Imaging. Springer-Verlag Nature; 2023:118–28
  24. 24.↵
    1. Iglesias JE,
    2. Billot B,
    3. Balbastre Y, et al
    . SynthSR: a public AI tool to turn heterogeneous clinical brain scans into high-resolution T1-weighted images for 3D morphometry. Sci Adv 2023;9:eadd3607 doi:10.1126/sciadv.add3607 pmid:36724222
    CrossRefPubMed
  25. 25.↵
    1. Lu Z,
    2. Wang J,
    3. Li Z, et al
    . Two-stage self-supervised cycle-consistency transformer network for reducing slice gap in MR images. IEEE J Biomed Health Inform 2023;27:3337–48 doi:10.1109/JBHI.2023.3271815 pmid:37126622
    CrossRefPubMed
  26. 26.↵
    1. Du J,
    2. He Z,
    3. Wang L, et al
    . Super-resolution reconstruction of single anisotropic 3D MR images using residual convolutional neural network. Neurocomputing 2020;392:209–20 doi:10.1016/j.neucom.2018.10.102
    CrossRef
  27. 27.↵
    1. Fischer JS,
    2. Rudick RA,
    3. Cutter GR, et al
    . The multiple sclerosis functional composite measure (MSFC): an integrated approach to MS clinical outcome assessment. Mult Scler 1999;5:244–50 doi:10.1177/135245859900500409 pmid:10467383
    CrossRefPubMedWeb of Science
  28. 28.↵
    1. Kurtzke JF
    . Rating neurologic impairment in multiple sclerosis. Neurology 1983;33:1444–52 doi:10.1212/wnl.33.11.1444 pmid:6685237
    Abstract/FREE Full Text
  29. 29.↵
    1. De Leener B,
    2. Lévy S,
    3. Dupont SM, et al
    . SCT: spinal cord toolbox, an open-source software for processing spinal cord MRI data. NeuroImage 2017;145:24–43 doi:10.1016/j.neuroimage.2016.10.009 pmid:27720818
    CrossRefPubMed
  30. 30.↵
    1. Gros C,
    2. De Leener B,
    3. Badji A, et al
    . Automatic segmentation of the spinal cord and intramedullary multiple sclerosis lesions with convolutional neural networks. NeuroImage Orlando Neuroimage 2019;184:901–15 doi:10.1016/j.neuroimage.2018.09.081 pmid:30300751
    CrossRefPubMed
  31. 31.↵
    1. Bédard S,
    2. Cohen-Adad J
    . Automatic measure and normalization of spinal cord cross-sectional area using the pontomedullary junction. Front Neuroimaging 2022;1:1031253 doi:10.3389/fnimg.2022.1031253 pmid:37555172
    CrossRefPubMed
  32. 32.↵
    1. Han S,
    2. Remedios SW,
    3. Schär M, et al
    . ESPRESO: an algorithm to estimate the slice profile of a single magnetic resonance image. Magn Reson Imaging 2023;98:155–63 doi:10.1016/j.MRI.2023.01.012 pmid:36702167
    CrossRefPubMed
  33. 33.↵
    1. Pauly J,
    2. Le Roux P,
    3. Nishimura D, et al
    . Parameter relations for the Shinnar-Le Roux selective excitation pulse design algorithm (NMR imaging). IEEE Trans Med Imaging 1991;10:53–65 doi:10.1109/42.75611 pmid:18222800
    CrossRefPubMedWeb of Science
  34. 34.↵
    1. Wang Z,
    2. Bovik AC,
    3. Sheikh HR, et al
    . Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 2004;13:600–12 doi:10.1109/tip.2003.819861 pmid:15376593
    CrossRefPubMedWeb of Science
  35. 35.↵
    1. Wang Z,
    2. Bovik AC
    . Mean squared error: love it or leave it? A new look at signal fidelity measures. IEEE Signal Process. Mag 2009;26:98–117 doi:10.1109/MSP.2008.930649
    CrossRef
  36. 36.↵
    1. Bash S,
    2. Tanenbaum LN,
    3. Segovis C, et al
    . CPT codes for quantitative MRI of the brain: what it means for neuroradiology. AJNR Am J Neuroradiol 2024;45:E19 doi:10.3174/ajnr.A8286 pmid:38663987
    FREE Full Text
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 46 (4)
American Journal of Neuroradiology
Vol. 46, Issue 4
1 Apr 2025
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Super-Resolution in Clinically Available Spinal Cord MRIs Enables Automated Atrophy Analysis
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Blake E. Dewey, Samuel W. Remedios, Muraleetharan Sanjayan, Nicole Bou Rjeily, Alexandra Zambriczki Lee, Chelsea Wyche, Safiya Duncan, Jerry L. Prince, Peter A. Calabresi, Kathryn C. Fitzgerald, Ellen M. Mowry
Super-Resolution in Clinically Available Spinal Cord MRIs Enables Automated Atrophy Analysis
American Journal of Neuroradiology Apr 2025, 46 (4) 823-831; DOI: 10.3174/ajnr.A8526

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Super-Resolution MRI for Spinal Cord Atrophy
Blake E. Dewey, Samuel W. Remedios, Muraleetharan Sanjayan, Nicole Bou Rjeily, Alexandra Zambriczki Lee, Chelsea Wyche, Safiya Duncan, Jerry L. Prince, Peter A. Calabresi, Kathryn C. Fitzgerald, Ellen M. Mowry
American Journal of Neuroradiology Apr 2025, 46 (4) 823-831; DOI: 10.3174/ajnr.A8526
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref (1)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Querschnittsfläche des unteren Halsmarks als Biomarker für MS-Patienten
    Neuroradiologie Scan 2025 15 02

More in this TOC Section

  • Cone Beam CT Myelography
  • Post-Procedural Brachial Neuritis Features
  • Diagnostic Value of Brain WMH in SIH
Show more Spine Imaging and Spine Image-Guided Interventions

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire