Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleArtificial Intelligence

Leveraging Physics-Based Synthetic MR Images and Deep Transfer Learning for Artifact Reduction in Echo-Planar Imaging

Catalina Raymond, Jingwen Yao, Bryan Clifford, Thorsten Feiweier, Sonoko Oshima, Donatello Telesca, Xiaodong Zhong, Heiko Meyer, Richard G. Everson, Noriko Salamon, Timothy F. Cloughesy and Benjamin M. Ellingson
American Journal of Neuroradiology April 2025, 46 (4) 733-741; DOI: https://doi.org/10.3174/ajnr.A8566
Catalina Raymond
aFrom the UCLA Brain Tumor Imaging Laboratory (C.R., J.Y., S.O., B.M.E.), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
bDepartment of Radiological Sciences (C.R., J.Y., S.O., X.Z., N.S., B.M.E), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Catalina Raymond
Jingwen Yao
aFrom the UCLA Brain Tumor Imaging Laboratory (C.R., J.Y., S.O., B.M.E.), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
bDepartment of Radiological Sciences (C.R., J.Y., S.O., X.Z., N.S., B.M.E), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jingwen Yao
Bryan Clifford
cSiemens Medical Solutions USA, Inc. (B.C.), Los Angeles, CA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Bryan Clifford
Thorsten Feiweier
dSiemens Healthineers AG (T.F., H.M.), Erlangen, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Thorsten Feiweier
Sonoko Oshima
aFrom the UCLA Brain Tumor Imaging Laboratory (C.R., J.Y., S.O., B.M.E.), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
bDepartment of Radiological Sciences (C.R., J.Y., S.O., X.Z., N.S., B.M.E), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Donatello Telesca
iDepartment of Biostatistics (D.T.), University of California, Los Angeles, Los Angeles, CA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xiaodong Zhong
bDepartment of Radiological Sciences (C.R., J.Y., S.O., X.Z., N.S., B.M.E), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
hDepartment of Bioengineering (X.Z., B.M.E.), Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Heiko Meyer
dSiemens Healthineers AG (T.F., H.M.), Erlangen, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Heiko Meyer
Richard G. Everson
eDepartment of Neurosurgery (R.G.E.), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Noriko Salamon
bDepartment of Radiological Sciences (C.R., J.Y., S.O., X.Z., N.S., B.M.E), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Noriko Salamon
Timothy F. Cloughesy
fDepartment of Neurology (T.F.C.), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Timothy F. Cloughesy
Benjamin M. Ellingson
aFrom the UCLA Brain Tumor Imaging Laboratory (C.R., J.Y., S.O., B.M.E.), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
bDepartment of Radiological Sciences (C.R., J.Y., S.O., X.Z., N.S., B.M.E), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
gDepartment of Psychiatry and Biobehavioral Sciences (B.M.E.), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
hDepartment of Bioengineering (X.Z., B.M.E.), Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Benjamin M. Ellingson
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Franz Schmitt MKS,
    2. Turner R
    . Echo-Planar Imaging: Theory, Technique, and Application. Springer-Verlag; 1998:179–200
  2. 2.↵
    1. Buonocore MH,
    2. Gao L
    . Ghost artifact reduction for echo planar imaging using image phase correction. Magn Reson Med 1997;38:89–100 doi:10.1002/mrm.1910380114 pmid:9211384
    CrossRefPubMed
  3. 3.↵
    1. Chen N,
    2. Wyrwicz AM
    . Removal of EPI Nyquist ghost artifacts with two‐dimensional phase correction. Magn Reson Med 2004;51:1247–53 doi:10.1002/mrm.20097 pmid:15170846
    CrossRefPubMed
  4. 4.↵
    1. Bruder H,
    2. Fischer H,
    3. Reinfelder HE, et al
    . Image reconstruction for echo planar imaging with nonequidistant k‐space sampling. Magn Reson Med 1992;23:311–23 doi:10.1002/mrm.1910230211 pmid:1549045
    CrossRefPubMedWeb of Science
  5. 5.↵
    1. Poser BA,
    2. Barth M,
    3. Goa PE, et al
    . Single‐shot echo‐planar imaging with Nyquist ghost compensation: interleaved dual echo with acceleration (IDEA) echo‐planar imaging (EPI). Magn Reson Med 2013;69:37–47 doi:10.1002/mrm.24222 pmid:22411762
    CrossRefPubMed
  6. 6.↵
    1. Bilgic B,
    2. Chatnuntawech I,
    3. Manhard MK, et al
    . Highly accelerated multishot echo planar imaging through synergistic machine learning and joint reconstruction. Magn Reson Med 2019;82:1343–58 doi:10.1002/mrm.27813 pmid:31106902
    CrossRefPubMed
  7. 7.↵
    1. Kawamura M,
    2. Tamada D,
    3. Funayama S, et al
    . Accelerated acquisition of high-resolution diffusion-weighted imaging of the brain with a multi-shot echo-planar sequence: deep-learning-based denoising. Magn Reson Med Sci 2021;20:99–105 doi:10.2463/mrms.tn.2019-0081 pmid:32147643
    CrossRefPubMed
  8. 8.↵
    1. Lee J,
    2. Han Y,
    3. Ryu JK, et al
    . k‐Space deep learning for reference‐free EPI ghost correction. Magn Reson Med 2019;82:2299–313 doi:10.1002/mrm.27896 pmid:31321809
    CrossRefPubMed
  9. 9.↵
    1. Cui L,
    2. Song Y,
    3. Wang Y, et al
    . Motion artifact reduction for magnetic resonance imaging with deep learning and k-space analysis. PloS one 2023;18:e0278668 doi:10.1371/journal.pone.0278668 pmid:36603007
    CrossRefPubMed
  10. 10.↵
    1. Duong ST,
    2. Phung SL,
    3. Bouzerdoum A, et al
    . An unsupervised deep learning technique for susceptibility artifact correction in reversed phase-encoding EPI images. Magn Reson Imaging 2020;71:1–10 doi:10.1016/j.MRI.2020.04.004 pmid:32407764
    CrossRefPubMed
  11. 11.↵
    1. Hu Z,
    2. Wang Y,
    3. Zhang Z, et al
    . Distortion correction of single-shot EPI enabled by deep-learning. Neuroimage 2020;221:117170 doi:10.1016/j.neuroimage.2020.117170 pmid:32682096
    CrossRefPubMed
  12. 12.↵
    1. Luo G,
    2. Wang X,
    3. Blumenthal M, et al
    . Generative image priors for MRI Reconstruction Trained from Magnitude-Only Images. arXiv preprint 2023:230802340
  13. 13.↵
    1. Constantinides CD,
    2. Weiss RG,
    3. Lee R, et al
    . Restoration of low resolution metabolic images with a priori anatomic information: 23Na MRI in myocardial infarction. Magn Reson Imaging 2000;18:461–71 doi:10.1016/s0730-725x(99)00145-9 pmid:10788724
    CrossRefPubMed
  14. 14.↵
    1. Haldar JP,
    2. Hernando D,
    3. Song SK, et al
    . Anatomically constrained reconstruction from noisy data. Magn Reson Med 2008;59:810–18 doi:10.1002/mrm.21536 pmid:18383297
    CrossRefPubMed
  15. 15.↵
    1. Ellingson BM,
    2. Bendszus M,
    3. Boxerman J, et al
    ; Jumpstarting Brain Tumor Drug Development Coalition Imaging Standardization Steering Committee. Consensus recommendations for a standardized brain tumor imaging protocol in clinical trials. Neuro Oncol 2015;17:1188–98 doi:10.1093/neuonc/nov095 pmid:26250565
    CrossRefPubMed
  16. 16.↵
    1. Truong TK,
    2. Clymer BD,
    3. Chakeres DW, et al
    . Three-dimensional numerical simulations of susceptibility-induced magnetic field inhomogeneities in the human head. Magn Reson Imaging 2002;20:759–70 doi:10.1016/s0730-725x(02)00601-x pmid:12591571
    CrossRefPubMed
  17. 17.↵
    1. Bouwman JG,
    2. Bakker CJG
    . Alias subtraction more efficient than conventional zero-padding in the Fourier-based calculation of the susceptibility induced perturbation of the magnetic field in MR. Magn Reson Med 2012;68:621–30 doi:10.1002/mrm.24343 pmid:22711589
    CrossRefPubMed
  18. 18.↵
    1. Zijlstra F,
    2. Bouwman JG,
    3. Braškutė I, et al
    . Fast Fourier-based simulation of off-resonance artifacts in steady-state gradient echo MRI applied to metal object localization. Magn Reson Med 2017;78:2035–41 doi:10.1002/mrm.26556 pmid:27928834
    CrossRefPubMed
  19. 19.↵
    1. Rong W,
    2. Li Z,
    3. Zhang W, et al
    . An improved CANNY edge detection algorithm. In: 2014 IEEE International Conference on Mechatronics and Automation 2014:577–82
  20. 20.↵
    1. Deriche R
    . Using Canny’s criteria to derive a recursively implemented optimal edge detector. Int J Comput Vision 1987;1:167–87 doi:10.1007/BF00123164
    CrossRef
  21. 21.↵
    1. Isola P,
    2. Zhu JY,
    3. Zhou T, et al
    . Image-to-Image Translation with Conditional Adversarial Networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017:5967–76 doi:10.1109/CVPR.2017.632
    CrossRef
  22. 22.↵
    1. He K,
    2. Zhang X,
    3. Ren S, et al
    . Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2016:770–78 doi:10.1109/CVPR.2016.90
    CrossRef
  23. 23.↵
    1. Alom MZ,
    2. Hasan M,
    3. Yakopcic C, et al
    . Recurrent residual convolutional neural network based on U-Net (R2U-Net) for medical image segmentation. 2018
  24. 24.↵
    1. Oktay O,
    2. Schlemper J,
    3. Folgoc LL, et al
    . Attention u-net: learning where to look for the pancreas. arXiv preprint 2018:180403999
  25. 25.↵
    1. Wang Z,
    2. Bovik AC,
    3. Sheikh HR, et al
    . Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 2004;13:600–12 doi:10.1109/TIP.2003.819861
    CrossRefPubMedWeb of Science
  26. 26.↵
    1. Wang Z,
    2. Simoncelli EP,
    3. Bovik AC
    . Multiscale structural similarity for image quality assessment. In: The Thirty-Seventh Asilomar Conference on Signals, Systems & Computers, 2003 2003:1398–1402
  27. 27.↵
    1. Huttenlocher DP,
    2. Klanderman GA,
    3. Rucklidge WJ
    . Comparing images using the Hausdorff distance. IEEE Trans Pattern Anal Machine Intell 1993;15:850–63 doi:10.1109/34.232073
    CrossRef
  28. 28.↵
    1. Oshima S,
    2. Hagiwara A,
    3. Raymond C, et al
    . Change in volumetric tumor growth rate after cytotoxic therapy is predictive of overall survival in recurrent glioblastoma. Neurooncol Adv 2023;5:vdad084 doi:10.1093/noajnl/vdad084 pmid:37554221
    CrossRefPubMed
  29. 29.↵
    1. Wen PY,
    2. Macdonald DR,
    3. Reardon DA, et al
    . Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 2010;28:1963–72 doi:10.1200/JCO.2009.26.3541 pmid:20231676
    Abstract/FREE Full Text
  30. 30.↵
    1. Cho NS,
    2. Hagiwara A,
    3. Sanvito F, et al
    . A multi-reader comparison of normal-appearing white matter normalization techniques for perfusion and diffusion MRI in brain tumors. Neuroradiology 2023;65:559–68 doi:10.1007/s00234-022-03072-y pmid:36301349
    CrossRefPubMed
  31. 31.↵
    1. Ellingson BM,
    2. Kim E,
    3. Woodworth DC, et al
    . Diffusion MRI quality control and functional diffusion map results in ACRIN 6677/RTOG 0625: a multicenter, randomized, phase II trial of bevacizumab and chemotherapy in recurrent glioblastoma. Int J Oncol 2015;46:1883–92 doi:10.3892/ijo.2015.2891 pmid:25672376
    CrossRefPubMed
  32. 32.↵
    1. Abayazeed AH,
    2. Abbassy A,
    3. Müeller M, et al
    . NS-HGlio: a generalizable and repeatable HGG segmentation and volumetric measurement AI algorithm for the longitudinal MRI assessment to inform RANO in trials and clinics. Neurooncol Adv 2023;5:vdac184 doi:10.1093/noajnl/vdac184 pmid:36685009
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 46 (4)
American Journal of Neuroradiology
Vol. 46, Issue 4
1 Apr 2025
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Leveraging Physics-Based Synthetic MR Images and Deep Transfer Learning for Artifact Reduction in Echo-Planar Imaging
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Catalina Raymond, Jingwen Yao, Bryan Clifford, Thorsten Feiweier, Sonoko Oshima, Donatello Telesca, Xiaodong Zhong, Heiko Meyer, Richard G. Everson, Noriko Salamon, Timothy F. Cloughesy, Benjamin M. Ellingson
Leveraging Physics-Based Synthetic MR Images and Deep Transfer Learning for Artifact Reduction in Echo-Planar Imaging
American Journal of Neuroradiology Apr 2025, 46 (4) 733-741; DOI: 10.3174/ajnr.A8566

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Deep Learning for Artifact Reduction in EPI
Catalina Raymond, Jingwen Yao, Bryan Clifford, Thorsten Feiweier, Sonoko Oshima, Donatello Telesca, Xiaodong Zhong, Heiko Meyer, Richard G. Everson, Noriko Salamon, Timothy F. Cloughesy, Benjamin M. Ellingson
American Journal of Neuroradiology Apr 2025, 46 (4) 733-741; DOI: 10.3174/ajnr.A8566
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Graphical Abstract
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • AI-Enhanced Photon-Counting CT of Temporal Bone
  • An AI De-identification Method for Pediatric MRIs
  • Aneurysm Segmentation on MRI-TOF with AI
Show more ARTIFICIAL INTELLIGENCE

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire