Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleArtificial Intelligence

Automated Idiopathic Normal Pressure Hydrocephalus Diagnosis via Artificial Intelligence–Based 3D T1 MRI Volumetric Analysis

Joonhyung Lee, Dana Kim, Chong Hyun Suh, Suyoung Yun, Kyu Sung Choi, Seungjun Lee, Wooseok Jung, Jinyoung Kim, Hwon Heo, Woo Hyun Shim, Sungyang Jo, Sun Ju Chung, Jae-Sung Lim, Ho Sung Kim, Sang Joon Kim and Jae-Hong Lee
American Journal of Neuroradiology January 2025, 46 (1) 33-40; DOI: https://doi.org/10.3174/ajnr.A8489
Joonhyung Lee
aFrom the NAVER Cloud Inc (J.L.), Seoul, Republic of Korea
fVUNO Inc (J.L., S.L., W.J., J.K.), Seoul, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dana Kim
bUniversity of Ulsan College of Medicine (D.K.,), Seoul, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chong Hyun Suh
cDepartment of Radiology and Research Institute of Radiology (C.H.S., H.H., W.H.S., H.S.K., S.J.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Chong Hyun Suh
Suyoung Yun
dDepartment of Radiology (S.Y.), Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Suyoung Yun
Kyu Sung Choi
eDepartment of Radiology (K.S.C.), Seoul National University Hospital, Seoul, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Kyu Sung Choi
Seungjun Lee
fVUNO Inc (J.L., S.L., W.J., J.K.), Seoul, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Wooseok Jung
fVUNO Inc (J.L., S.L., W.J., J.K.), Seoul, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Wooseok Jung
Jinyoung Kim
fVUNO Inc (J.L., S.L., W.J., J.K.), Seoul, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jinyoung Kim
Hwon Heo
cDepartment of Radiology and Research Institute of Radiology (C.H.S., H.H., W.H.S., H.S.K., S.J.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Hwon Heo
Woo Hyun Shim
cDepartment of Radiology and Research Institute of Radiology (C.H.S., H.H., W.H.S., H.S.K., S.J.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Woo Hyun Shim
Sungyang Jo
gDepartment of Neurology (S.J., S.J.C., J.-S.L., J.-H.L.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sun Ju Chung
gDepartment of Neurology (S.J., S.J.C., J.-S.L., J.-H.L.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jae-Sung Lim
gDepartment of Neurology (S.J., S.J.C., J.-S.L., J.-H.L.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jae-Sung Lim
Ho Sung Kim
cDepartment of Radiology and Research Institute of Radiology (C.H.S., H.H., W.H.S., H.S.K., S.J.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Ho Sung Kim
Sang Joon Kim
cDepartment of Radiology and Research Institute of Radiology (C.H.S., H.H., W.H.S., H.S.K., S.J.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Sang Joon Kim
Jae-Hong Lee
gDepartment of Neurology (S.J., S.J.C., J.-S.L., J.-H.L.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jae-Hong Lee
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Nakajima M,
    2. Yamada S,
    3. Miyajima M, et al
    ; The research committee of idiopathic normal pressure hydrocephalus. Guidelines for management of idiopathic normal pressure hydrocephalus: endorsed by the Japanese Society of Normal Pressure Hydrocephalus. Neurol Med Chir (Tokyo) 2021;61:63–97 doi:10.2176/nmc.st.2020-0292 pmid:33455998
    CrossRefPubMed
  2. 2.↵
    1. Toma AK,
    2. Papadopoulos MC,
    3. Stapleton S, et al
    . Systematic review of the outcome of shunt surgery in idiopathic normal-pressure hydrocephalus. Acta Neurochir (Wien) 2013;155:1977–80 doi:10.1007/s00701-013-1835-5 pmid:23975646
    CrossRefPubMed
  3. 3.↵
    1. Popal AM,
    2. Zhu Z,
    3. Guo X, et al
    . Outcomes of ventriculoperitoneal shunt in patients with idiopathic normal-pressure hydrocephalus 2 years after surgery. Front Surg 2021;8:641561 doi:10.3389/fsurg.2021.641561 pmid:34869547
    CrossRefPubMed
  4. 4.↵
    1. Trungu S,
    2. Scollato A,
    3. Ricciardi L, et al
    . Clinical outcomes of shunting in normal pressure hydrocephalus: a multicenter prospective observational study. J Clin Med 2022;11:1286 doi:10.3390/jcm11051286 pmid:35268376
    CrossRefPubMed
  5. 5.↵
    1. Nassar BR,
    2. Lippa CF
    . Idiopathic normal pressure hydrocephalus: a review for general practitioners. Gerontol Geriatr Med 2016;2:2333721416643702 doi:10.1177/2333721416643702 pmid:28138494
    CrossRefPubMed
  6. 6.↵
    1. Little MO
    . Reversible dementias. Clin Geriatr Med 2018;34:537–62 doi:10.1016/j.cger.2018.07.001 pmid:30336987
    CrossRefPubMed
  7. 7.↵
    1. Fällmar D,
    2. Andersson O,
    3. Kilander L, et al
    . Imaging features associated with idiopathic normal pressure hydrocephalus have high specificity even when comparing with vascular dementia and atypical parkinsonism. Fluids Barriers CNS 2021;18:35 doi:10.1186/s12987-021-00270-3 pmid:34325703
    CrossRefPubMed
  8. 8.↵
    1. Molde K,
    2. Söderström L,
    3. Laurell K
    . Parkinsonian symptoms in normal pressure hydrocephalus: a population-based study. J Neurol 2017;264:2141–48 doi:10.1007/s00415-017-8598-5 pmid:28879446
    CrossRefPubMed
  9. 9.↵
    1. Serulle Y,
    2. Rusinek H,
    3. Kirov II, et al
    . Differentiating shunt-responsive normal pressure hydrocephalus from Alzheimer disease and normal aging: pilot study using automated MRI brain tissue segmentation. J Neurol 2014;261:1994–2002 doi:10.1007/s00415-014-7454-0 pmid:25082631
    CrossRefPubMed
  10. 10.↵
    What is normal pressure hydrocephalus? https://www.hydroassoc.org/normal-pressure-hydrocephalus-2/. Accessed July 04, 2024
  11. 11.↵
    1. Park H,
    2. Park C,
    3. Suh C, et al
    . Prognostic utility of disproportionately enlarged subarachnoid space hydrocephalus in idiopathic normal pressure hydrocephalus treated with ventriculoperitoneal shunt surgery: a systematic review and meta-analysis. AJNR Am J Neuroradiol 2021;42:1429–36 doi:10.3174/ajnr.A7168 pmid:34045302
    Abstract/FREE Full Text
  12. 12.↵
    1. Park HY,
    2. Kim M,
    3. Suh CH, et al
    . Diagnostic performance and interobserver agreement of the callosal angle and Evans’ index in idiopathic normal pressure hydrocephalus: a systematic review and meta-analysis. Eur Radiol 2021;31:5300–11 doi:10.1007/s00330-020-07555-5 pmid:33409775
    CrossRefPubMed
  13. 13.↵
    1. Hashimoto M,
    2. Ishikawa M,
    3. Mori E, et al
    ; Study of INPH on neurological improvement (SINPHONI). Diagnosis of idiopathic normal pressure hydrocephalus is supported by MRI-based scheme: a prospective cohort study. Cerebrospinal Fluid Res 2010;7:18 doi:10.1186/1743-8454-7-18 pmid:21040519
    CrossRefPubMed
  14. 14.↵
    1. Ishii K,
    2. Kanda T,
    3. Harada A, et al
    . Clinical impact of the callosal angle in the diagnosis of idiopathic normal pressure hydrocephalus. Eur Radiol 2008;18:2678–83 doi:10.1007/s00330-008-1044-4 pmid:18500524
    CrossRefPubMed
  15. 15.↵
    1. Yun SY,
    2. Choi KS,
    3. Suh CH, et al
    . Risk estimation for idiopathic normal-pressure hydrocephalus: development and validation of a brain morphometry–based nomogram. Eur Radiol 2023;33:6145–56 doi:10.1007/s00330-023-09612-1 pmid:37059905
    CrossRefPubMed
  16. 16.↵
    1. Miskin N,
    2. Patel H,
    3. Franceschi AM, et al
    ; Alzheimer’s Disease Neuroimaging Initiative. Diagnosis of normal-pressure hydrocephalus: use of traditional measures in the era of volumetric MR imaging. Radiology 2017;285:197–205 doi:10.1148/radiol.2017161216 pmid:28498794
    CrossRefPubMed
  17. 17.↵
    1. Irie R,
    2. Otsuka Y,
    3. Hagiwara A, et al
    . A novel deep learning approach with a 3D convolutional ladder network for differential diagnosis of idiopathic normal pressure hydrocephalus and Alzheimer’s disease. Magn Reson Med Sci 2020;19:351–58 doi:10.2463/mrms.mp.2019-0106 pmid:31969525
    CrossRefPubMed
  18. 18.↵
    1. Borzage M,
    2. Saunders A,
    3. Hughes J, et al
    . The first examination of diagnostic performance of automated measurement of the callosal angle in 1856 elderly patients and volunteers indicates that 12.4% of exams met the criteria for possible normal pressure hydrocephalus. AJNR Am J Neuroradiol 2021;42:1942–48 doi:10.3174/ajnr.A7294 pmid:34620589
    Abstract/FREE Full Text
  19. 19.↵
    1. Cohen JF,
    2. Korevaar DA,
    3. Altman DG, et al
    . STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation and elaboration. BMJ Open 2016;6:e012799 doi:10.1136/bmjopen-2016-012799 pmid:28137831
    Abstract/FREE Full Text
  20. 20.↵
    1. Altman DG,
    2. Simera I,
    3. Hoey J, et al
    . EQUATOR: reporting guidelines for health research. Lancet 2008;371:1149–50 doi:10.1016/S0140-6736(08)60505-X pmid:18395566
    CrossRefPubMedWeb of Science
  21. 21.↵
    1. Collins GS,
    2. Reitsma JB,
    3. Altman DG, et al
    . Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. Circulation 2015;131:211–19 doi:10.1161/CIRCULATIONAHA.114.014508 pmid:25569120
    Abstract/FREE Full Text
  22. 22.↵
    1. McKhann GM,
    2. Knopman DS,
    3. Chertkow H, et al
    . The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011;7:263–69 doi:10.1016/j.jalz.2011.03.005 pmid:21514250
    CrossRefPubMedWeb of Science
  23. 23.↵
    1. Gibb W,
    2. Lees A
    . The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1988;51:745–52 doi:10.1136/jnnp.51.6.745 pmid:2841426
    Abstract/FREE Full Text
  24. 24.↵
    1. Evans WA
    . An encephalographic ratio for estimating ventricular enlargement and cerebral atrophy. Arch NeurPsych 1942;47:931–37 doi:10.1001/archneurpsyc.1942.02290060069004
    CrossRef
  25. 25.↵
    1. Fischl B
    . FreeSurfer. Neuroimage 2012;62:774–81 doi:10.1016/j.neuroimage.2012.01.021
    CrossRefPubMedWeb of Science
  26. 26.↵
    1. Jenkinson M,
    2. Beckmann CF,
    3. Behrens TE, et al
    . FSL. Neuroimage 2012;62:782–90 doi:10.1016/j.neuroimage.2011.09.015 pmid:21979382
    CrossRefPubMedWeb of Science
  27. 27.↵
    1. Fonov VS,
    2. Evans AC,
    3. McKinstry RC, et al
    . Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. Neuroimage 2009;47:S102 doi:10.1016/S1053-8119(09)70884-5
    CrossRef
  28. 28.↵
    1. Liu Z,
    2. Lin Y,
    3. Cao Y, et al
    . Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference Computer Vision. October 11–17, 2021:10012–22. Montreal, QC, Canada
  29. 29.↵
    1. Suh PS,
    2. Jung W,
    3. Suh CH, et al
    . Development and validation of a deep learning-based automatic segmentation model for assessing intracranial volume: comparison with NeuroQuant, FreeSurfer, and SynthSeg. Front Neurol 2023;14:1334962 doi:10.3389/fneur.2023.1221892 pmid:37719763
    CrossRefPubMed
  30. 30.↵
    1. Ardekani BA,
    2. Bachman AH
    . Model-based automatic detection of the anterior and posterior commissures on MRI scans. Neuroimage 2009;46:677–82 doi:10.1016/j.neuroimage.2009.02.030 pmid:19264138
    CrossRefPubMedWeb of Science
  31. 31.↵
    1. Bradski G
    . The openCV library. Dr Dobb’s 2000;25:120–23. https://github.com/opencv/opencv/wiki/CiteOpenCV.
  32. 32.↵
    1. Pedregosa F,
    2. Varoquaux G,
    3. Gramfort A, et al
    . Scikit-learn: machine learning in Python. The Journal of Machine Learning Research 2011;12:2825–30
  33. 33.↵
    1. Vallat R
    . Pingouin: statistics in Python. JOSS 2018;3:1026 doi:10.21105/joss.01026
    CrossRef
  34. 34.↵
    1. Chen T,
    2. Guestrin C
    . Xgboost: ascalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. August 13–17, 2016: 785–94. New York
  35. 35.↵
    1. Pahwa B,
    2. Tayal A,
    3. Shukla A, et al
    . Utility of machine learning in the management of normal pressure hydrocephalus (NPH): a systematic review. World Neurosurg 2023 Jun 24 [Epub ahead of print] doi:10.1016/j.wneu.2023.06.080 pmid:37356488
    CrossRefPubMed
  36. 36.↵
    1. Rau A,
    2. Kim S,
    3. Yang S, et al
    . SVM-based normal pressure hydrocephalus detection. Clin Neuroradiol 2021;31:1029–35 doi:10.1007/s00062-020-00993-0 pmid:33496810
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 46 (1)
American Journal of Neuroradiology
Vol. 46, Issue 1
1 Jan 2025
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Automated Idiopathic Normal Pressure Hydrocephalus Diagnosis via Artificial Intelligence–Based 3D T1 MRI Volumetric Analysis
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Joonhyung Lee, Dana Kim, Chong Hyun Suh, Suyoung Yun, Kyu Sung Choi, Seungjun Lee, Wooseok Jung, Jinyoung Kim, Hwon Heo, Woo Hyun Shim, Sungyang Jo, Sun Ju Chung, Jae-Sung Lim, Ho Sung Kim, Sang Joon Kim, Jae-Hong Lee
Automated Idiopathic Normal Pressure Hydrocephalus Diagnosis via Artificial Intelligence–Based 3D T1 MRI Volumetric Analysis
American Journal of Neuroradiology Jan 2025, 46 (1) 33-40; DOI: 10.3174/ajnr.A8489

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
2 Responses
Respond to this article
Share
Bookmark this article
Deep Learning for Normal-Pressure Hydrocephalus
Joonhyung Lee, Dana Kim, Chong Hyun Suh, Suyoung Yun, Kyu Sung Choi, Seungjun Lee, Wooseok Jung, Jinyoung Kim, Hwon Heo, Woo Hyun Shim, Sungyang Jo, Sun Ju Chung, Jae-Sung Lim, Ho Sung Kim, Sang Joon Kim, Jae-Hong Lee
American Journal of Neuroradiology Jan 2025, 46 (1) 33-40; DOI: 10.3174/ajnr.A8489
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref (1)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Volumetric Analysis Using an Automatic Whole-Brain Segmentation as a Biomarker for Idiopathic Normal Pressure Hydrocephalus
    Chun Geun Lim, Sung Won Youn, Yu Sung Yoon, Jihoon Hong, Hui Joong Lee
    Investigative Magnetic Resonance Imaging 2025 29 1

More in this TOC Section

  • AI-Enhanced Photon-Counting CT of Temporal Bone
  • DIRDL for Inflammatory Myelopathies
  • An AI De-identification Method for Pediatric MRIs
Show more Artificial Intelligence

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire