Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleArtificial Intelligence

Integrating Clinical Data and Radiomics and Deep Learning Features for End-to-End Delayed Cerebral Ischemia Prediction on Noncontrast CT

Qi-qi Ban, Hao-tian Zhang, Wei Wang, Yi-fan Du, Yi Zhao, Ai-jun Peng and Hang Qu
American Journal of Neuroradiology September 2024, 45 (9) 1260-1268; DOI: https://doi.org/10.3174/ajnr.A8301
Qi-qi Ban
aFrom the Department of Radiology (Q.-q.B., W.W., Y.Z., H.Q.), Affiliated Hospital of Yangzhou University, Yangzhou, China
bCollege of Medical Imaging (Q.-q.B., Y.-f.D.), Dalian Medical University, Dalian, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Qi-qi Ban
Hao-tian Zhang
cDepartment of Industrial and Systems Engineering (H.-t.Z.), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Hao-tian Zhang
Wei Wang
aFrom the Department of Radiology (Q.-q.B., W.W., Y.Z., H.Q.), Affiliated Hospital of Yangzhou University, Yangzhou, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Wei Wang
Yi-fan Du
bCollege of Medical Imaging (Q.-q.B., Y.-f.D.), Dalian Medical University, Dalian, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Yi-fan Du
Yi Zhao
aFrom the Department of Radiology (Q.-q.B., W.W., Y.Z., H.Q.), Affiliated Hospital of Yangzhou University, Yangzhou, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Yi Zhao
Ai-jun Peng
dDepartment of Neurosurgery (A.-j.P.), Affiliated Hospital of Yangzhou University, Yangzhou, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Ai-jun Peng
Hang Qu
aFrom the Department of Radiology (Q.-q.B., W.W., Y.Z., H.Q.), Affiliated Hospital of Yangzhou University, Yangzhou, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Hang Qu
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Neifert SN,
    2. Chapman EK,
    3. Martini ML, et al
    . Aneurysmal subarachnoid hemorrhage: the last decade. Transl Stroke Res 2021;12:428–46 doi:10.1007/s12975-020-00867-0 pmid:33078345
    CrossRefPubMed
  2. 2.↵
    1. Galea JP,
    2. Dulhanty L,
    3. Patel HC
    , UK and Ireland Subarachnoid Hemorrhage Database Collaborators. Predictors of outcome in aneurysmal subarachnoid hemorrhage patients: observations from a multicenter data set. Stroke 2017;48:2958–63 doi:10.1161/STROKEAHA.117.017777 pmid:28974630
    Abstract/FREE Full Text
  3. 3.↵
    1. Vergouwen MDI,
    2. Vermeulen M,
    3. van Gijn J, et al
    . Definition of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage as an outcome event in clinical trials and observational studies: proposal of a multidisciplinary research group. Stroke 2010;41:2391–95 doi:10.1161/STROKEAHA.110.589275 pmid:20798370
    Abstract/FREE Full Text
  4. 4.↵
    1. Schmidt JM,
    2. Wartenberg KE,
    3. Fernandez A, et al
    . Frequency and clinical impact of asymptomatic cerebral infarction due to vasospasm after subarachnoid hemorrhage. J Neurosurg 2008;109:1052–59 doi:10.3171/JNS.2008.109.12.1052 pmid:19035719
    CrossRefPubMedWeb of Science
  5. 5.↵
    1. Etminan N,
    2. Vergouwen MD,
    3. Ilodigwe D, et al
    . Effect of pharmaceutical treatment on vasospasm, delayed cerebral ischemia, and clinical outcome in patients with aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis. J Cereb Blood Flow Metab 2011;31:1443–51 doi:10.1038/jcbfm.2011.7 pmid:21285966
    CrossRefPubMed
  6. 6.↵
    1. Abdulazim A,
    2. Heilig M,
    3. Rinkel G, et al
    . Diagnosis of delayed cerebral ischemia in patients with aneurysmal subarachnoid hemorrhage and triggers for intervention. Neurocrit Care 2023;39:311–19 doi:10.1007/s12028-023-01812-3 pmid:37537496
    CrossRefPubMed
  7. 7.↵
    1. Savarraj JPJ,
    2. Hergenroeder GW,
    3. Zhu L, et al
    . Machine learning to predict delayed cerebral ischemia and outcomes in subarachnoid hemorrhage. Neurology 2021;96:e553–62 doi:10.1212/WNL.0000000000011211 pmid:33184232
    Abstract/FREE Full Text
  8. 8.↵
    1. de Jong G,
    2. Aquarius R,
    3. Sanaan B, et al
    . Prediction models in aneurysmal subarachnoid hemorrhage: forecasting clinical outcome with artificial intelligence. Neurosurgery 2021;88:E427–34 doi:10.1093/neuros/nyaa581 pmid:33548918
    CrossRefPubMed
  9. 9.↵
    1. Ramos LA,
    2. van der Steen WE,
    3. Sales Barros R, et al
    . Machine learning improves prediction of delayed cerebral ischemia in patients with subarachnoid hemorrhage. J Neurointerv Surg 2019;11:497–502 doi:10.1136/neurintsurg-2018-014258 pmid:30415227
    Abstract/FREE Full Text
  10. 10.↵
    1. de Rooij NK,
    2. Rinkel GJ,
    3. Dankbaar JW, et al
    . Delayed cerebral ischemia after subarachnoid hemorrhage: a systematic review of clinical, laboratory, and radiological predictors. Stroke 2013;44:43–54 doi:10.1161/STROKEAHA.112.674291 pmid:23250997
    Abstract/FREE Full Text
  11. 11.↵
    1. Chen HY,
    2. Elmer J,
    3. Zafar SF, et al
    . Combining transcranial Doppler and EEG data to predict delayed cerebral ischemia after subarachnoid hemorrhage. Neurology 2022;98:e459–69 doi:10.1212/WNL.0000000000013126 pmid:34845057
    Abstract/FREE Full Text
  12. 12.↵
    1. Megjhani M,
    2. Terilli K,
    3. Weiss M, et al
    . Dynamic detection of delayed cerebral ischemia: a study in 3 centers. Stroke 2021;52:1370–79 doi:10.1161/STROKEAHA.120.032546 pmid:33596676
    CrossRefPubMed
  13. 13.↵
    1. Shan D,
    2. Wang J,
    3. Qi P, et al
    . Non-contrasted CT radiomics for SAH prognosis prediction. Bioengineering (Basel) 2023;10:967 doi:10.3390/bioengineering10080967 pmid:37627852
    CrossRefPubMed
  14. 14.↵
    1. Yuan JY,
    2. Chen Y,
    3. Jayaraman K, et al
    . Automated quantification of compartmental blood volumes enables prediction of delayed cerebral ischemia and outcomes after aneurysmal subarachnoid hemorrhage. World Neurosurg 2023;170:e214–22 doi:10.1016/j.wneu.2022.10.105 pmid:36323345
    CrossRefPubMed
  15. 15.↵
    1. Boers AM,
    2. Zijlstra IA,
    3. Gathier CS, et al
    . Automatic quantification of subarachnoid hemorrhage on noncontrast CT. AJNR Am J Neuroradiol 2014;35:2279–86 doi:10.3174/ajnr.A4042 pmid:25104292
    Abstract/FREE Full Text
  16. 16.↵
    1. van der Steen WE,
    2. Zijlstra IA,
    3. Verbaan D, et al
    . Association of quantified location-specific blood volumes with delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. AJNR Am J Neuroradiol 2018;39:1059–64 doi:10.3174/ajnr.A5626 pmid:29650786
    Abstract/FREE Full Text
  17. 17.↵
    1. Zou KH,
    2. Warfield SK,
    3. Bharatha A, et al
    . Statistical validation of image segmentation quality based on a spatial overlap index: scientific reports. Acad Radiol 2004;11:178–89 doi:10.1016/s1076-6332(03)00671-8 pmid:14974593
    CrossRefPubMedWeb of Science
  18. 18.↵
    1. Perry JJ,
    2. Sivilotti ML,
    3. Émond M, et al
    . Prospective implementation of the Ottawa Subarachnoid Hemorrhage Rule and 6-Hour Computed Tomography Rule. Stroke 2020;51:424–30 doi:10.1161/STROKEAHA.119.026969 pmid:31805846
    CrossRefPubMed
  19. 19.↵
    1. Gillies RJ,
    2. Kinahan PE,
    3. Hricak H
    . Radiomics: images are more than pictures, they are data. Radiology 2016;278:563–77 doi:10.1148/radiol.2015151169 pmid:26579733
    CrossRefPubMed
  20. 20.↵
    1. Scapicchio C,
    2. Gabelloni M,
    3. Barucci A, et al
    . A deep look into radiomics. Radiol Med 2021;126:1296–311 doi:10.1007/s11547-021-01389-x pmid:34213702
    CrossRefPubMed
  21. 21.↵
    1. Krizhevsky A,
    2. Sutskever I,
    3. Hinton G
    . ImageNet classification with deep convolutional neural networks. Commun ACM 2017;60(6):84–90 doi:10.1145/3065386
    CrossRef
  22. 22.↵
    1. Turhon M,
    2. Li M,
    3. Kang H, et al
    . Development and validation of a deep learning model for prediction of intracranial aneurysm rupture risk based on multi-omics factor. Eur Radiol 2023;33:6759–70 doi:10.1007/s00330-023-09672-3 pmid:37099175
    CrossRefPubMed
  23. 23.↵
    1. Bai W,
    2. Oktay O,
    3. Sinclair M, et al
    . Semi-supervised learning for network-based cardiac MR image segmentation. In: Proceedings of the Medical Image Computing and Computer-Assisted Intervention−MICCAI 2017: 20th International Conference. September 11–13, 2017. Quebec City, Canada
  24. 24.↵
    1. Chen X,
    2. Wang X,
    3. Zhang K, et al
    . Recent advances and clinical applications of deep learning in medical image analysis. Med Image Anal 2022;79:102444 doi:10.1016/j.media.2022.102444 pmid:35472844
    CrossRefPubMed
  25. 25.↵
    1. van der Steen WE,
    2. Leemans EL,
    3. van den Berg R, et al
    . Radiological scales predicting delayed cerebral ischemia in subarachnoid hemorrhage: systematic review and meta-analysis. Neuroradiology 2019;61:247–56 doi:10.1007/s00234-019-02161-9 pmid:30693409
    CrossRefPubMed
  26. 26.↵
    1. Hu P,
    2. Li Y,
    3. Liu Y, et al
    . Comparison of conventional logistic regression and machine learning methods for predicting delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage: a multicentric observational cohort study. Front Aging Neurosci 2022;14:857521 doi:10.3389/fnagi.2022.857521 pmid:35783143
    CrossRefPubMed
  27. 27.↵
    1. Chen LC,
    2. Zhu Y,
    3. Papandreou G, et al
    . Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV). September 8–14, 2018. Munich, Germany
  28. 28.↵
    1. Ma J,
    2. Yuan Y
    . Dimension reduction of image deep feature using PCA. J Visual Commun Image Represent 2019;63:102578 doi:10.1016/j.jvcir.2019.102578
    CrossRef
  29. 29.↵
    1. Lan Y,
    2. Han B,
    3. Zhai T, et al
    . Clinical application of machine learning-based pathomics signature of gastric atrophy. Front Oncol 2024;14:1289265 doi:10.3389/fonc.2024.1289265 pmid:38476364
    CrossRefPubMed
  30. 30.↵
    1. Zhu H,
    2. Hu M,
    3. Ma Y, et al
    . Multi-center evaluation of machine learning-based radiomic model in predicting disease free survival and adjuvant chemotherapy benefit in stage II colorectal cancer patients. Cancer Imaging 2023;23:74 doi:10.1186/s40644-023-00588-1 pmid:37537659
    CrossRefPubMed
  31. 31.↵
    1. Murugappan M,
    2. Bourisly AK,
    3. Prakash NB, et al
    . Automated semantic lung segmentation in chest CT images using deep neural network. Neural Comput Appl 2023;35:15343–64 doi:10.1007/s00521-023-08407-1 pmid:37273912
    CrossRefPubMed
  32. 32.↵
    1. Du H,
    2. Ling L,
    3. Yu W, et al
    . Convolutional networks for the segmentation of intravascular ultrasound images: evaluation on a multicenter dataset. Comput Methods Programs Biomed 2022;215:106599 doi:10.1016/j.cmpb.2021.106599 pmid:34974233
    CrossRefPubMed
  33. 33.↵
    1. Lin YC,
    2. Lin G,
    3. Pandey S, et al
    . Fully automated segmentation and radiomics feature extraction of hypopharyngeal cancer on MRI using deep learning. Eur Radiol 2023;33:6548–56 doi:10.1007/s00330-023-09827-2 pmid:37338554
    CrossRefPubMed
  34. 34.↵
    1. de Rooij NK,
    2. Greving JP,
    3. Rinkel GJ, et al
    . Early prediction of delayed cerebral ischemia after subarachnoid hemorrhage: development and validation of a practical risk chart. Stroke 2013;44:1288–94 doi:10.1161/STROKEAHA.113.001125 pmid:23512975
    Abstract/FREE Full Text
  35. 35.↵
    1. Friedman JA,
    2. Goerss SJ,
    3. Meyer FB, et al
    . Volumetric quantification of Fisher Grade 3 aneurysmal subarachnoid hemorrhage: a novel method to predict symptomatic vasospasm on admission computerized tomography scans. J Neurosurg 2002;97:401–07 doi:10.3171/jns.2002.97.2.0401 pmid:12186469
    CrossRefPubMedWeb of Science
  36. 36.↵
    1. Huang EP,
    2. O’Connor JP,
    3. McShane LM, et al
    . Criteria for the translation of radiomics into clinically useful tests. Nat Rev Clin Oncol 2023;20:69–82 doi:10.1038/s41571-022-00707-0 pmid:36443594
    CrossRefPubMed
  37. 37.↵
    1. Roederer A,
    2. Holmes JH,
    3. Smith MJ, et al
    . Prediction of significant vasospasm in aneurysmal subarachnoid hemorrhage using automated data. Neurocrit Care 2014;21:444–50 doi:10.1007/s12028-014-9976-9 pmid:24715326
    CrossRefPubMed
  38. 38.↵
    1. Jia C,
    2. Yang Y,
    3. Xia Y, et al
    . Scaling up visual and vision-language representation learning with noisy text supervision. In: Proceedings of the International Conference on Machine Learnin. July 18–24, 2021; Virtual
  39. 39.↵
    1. Acampa M,
    2. Bongiorno M,
    3. Lazzerini PE, et al
    . Increased arterial stiffness is a predictor of delayed ischaemic stroke after subarachnoid haemorrhage. Heart Lung Circ 2021;30:525–30 doi:10.1016/j.hlc.2020.07.016 pmid:32896483
    CrossRefPubMed
  40. 40.↵
    1. Doonan RJ,
    2. Hausvater A,
    3. Scallan C, et al
    . The effect of smoking on arterial stiffness. Hypertens Res 2010;33:398–410 doi:10.1038/hr.2010.25 pmid:20379189
    CrossRefPubMedWeb of Science
  41. 41.↵
    1. Dhar R,
    2. Diringer MN
    . The burden of the systemic inflammatory response predicts vasospasm and outcome after subarachnoid hemorrhage. Neurocrit Care 2008;8:404–12 doi:10.1007/s12028-008-9054-2 pmid:18196475
    CrossRefPubMedWeb of Science
  42. 42.↵
    1. Abdel-Tawab M,
    2. Hasan AA,
    3. Ahmed MA, et al
    . Prognostic factors of delayed cerebral ischemia after subarachnoid hemorrhage including CT perfusion: a prospective cohort study. Egypt J Radiol Nucl Med 2020;51:61 doi:10.1186/s43055-020-00180-8
    CrossRef
  43. 43.↵
    1. Woo PY,
    2. Tse TP,
    3. Chan RS, et al
    . Computed tomography interobserver agreement in the assessment of aneurysmal subarachnoid hemorrhage and predictors for clinical outcome. J Neurointerv Surg 2017;9:1118–24 doi:10.1136/neurintsurg-2016-012576 pmid:29030464
    Abstract/FREE Full Text
  44. 44.↵
    1. van der Steen WE,
    2. Marquering HA,
    3. Boers AM, et al
    . Predicting delayed cerebral ischemia with quantified aneurysmal subarachnoid blood volume. World Neurosurg 2019;130:e613–19 doi:10.1016/j.wneu.2019.06.170 pmid:31260850
    CrossRefPubMed
  45. 45.↵
    1. Zijlstra IA,
    2. Gathier CS,
    3. Boers AM, et al
    . Association of automatically quantified total blood volume after aneurysmal subarachnoid hemorrhage with delayed cerebral ischemia. AJNR Am J Neuroradiol 2016;37:1588–93 doi:10.3174/ajnr.A4771 pmid:27102313
    Abstract/FREE Full Text
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 45 (9)
American Journal of Neuroradiology
Vol. 45, Issue 9
1 Sep 2024
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Integrating Clinical Data and Radiomics and Deep Learning Features for End-to-End Delayed Cerebral Ischemia Prediction on Noncontrast CT
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Qi-qi Ban, Hao-tian Zhang, Wei Wang, Yi-fan Du, Yi Zhao, Ai-jun Peng, Hang Qu
Integrating Clinical Data and Radiomics and Deep Learning Features for End-to-End Delayed Cerebral Ischemia Prediction on Noncontrast CT
American Journal of Neuroradiology Sep 2024, 45 (9) 1260-1268; DOI: 10.3174/ajnr.A8301

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Radiomics and AI for Delayed Cerebral Ischemia
Qi-qi Ban, Hao-tian Zhang, Wei Wang, Yi-fan Du, Yi Zhao, Ai-jun Peng, Hang Qu
American Journal of Neuroradiology Sep 2024, 45 (9) 1260-1268; DOI: 10.3174/ajnr.A8301
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • Compliance With Ethical Standards
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

Artificial Intelligence

  • AI-Enhanced Photon-Counting CT of Temporal Bone
  • An AI De-identification Method for Pediatric MRIs
  • Aneurysm Segmentation on MRI-TOF with AI
Show more Artificial Intelligence

Neurovascular/Stroke Imaging

  • DMV relationship with SVD and DTI measures in RSSI
  • Role of Hypoperfusion Intensity Ratio in Vessel Occlusions: A Review on Safety and Clinical Outcomes
  • DMV, IFS and CSVD burden
Show more Neurovascular/Stroke Imaging

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire