Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticlePediatric Neuroimaging

Identification of Multiclass Pediatric Low-Grade Neuroepithelial Tumor Molecular Subtype with ADC MR Imaging and Machine Learning

Matheus D. Soldatelli, Khashayar Namdar, Uri Tabori, Cynthia Hawkins, Kristen Yeom, Farzad Khalvati, Birgit B. Ertl-Wagner and Matthias W. Wagner
American Journal of Neuroradiology June 2024, 45 (6) 753-760; DOI: https://doi.org/10.3174/ajnr.A8199
Matheus D. Soldatelli
aFrom the Department Diagnostic Imaging (M.D.S., B.B.E.-W., M.W.W.), Division of Neuroradiology, The Hospital for Sick Children, Toronto, Ontario, Canada
bDepartment of Medical Imaging (M.D.S., K.N., F.K., B.B.E.-W., M.W.W.), University of Toronto, Toronto, Ontario, Canada
cInstitute of Medical Science (M.D.S., K.N., U.T., F.K., B.B.E.-W.), University of Toronto, Toronto, Ontario, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Matheus D. Soldatelli
Khashayar Namdar
bDepartment of Medical Imaging (M.D.S., K.N., F.K., B.B.E.-W., M.W.W.), University of Toronto, Toronto, Ontario, Canada
cInstitute of Medical Science (M.D.S., K.N., U.T., F.K., B.B.E.-W.), University of Toronto, Toronto, Ontario, Canada
dVector Institute (K.N., F.K.), Toronto, Ontario, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Uri Tabori
cInstitute of Medical Science (M.D.S., K.N., U.T., F.K., B.B.E.-W.), University of Toronto, Toronto, Ontario, Canada
eThe Arthur and Sonia Labatt Brain Tumour Research Centre (U.T., C.H.), The Hospital for Sick Children, Toronto, Ontario, Canada
fProgram in Genetics and Genome Biology (U.T.) The Hospital for Sick Children, Toronto, Ontario, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Uri Tabori
Cynthia Hawkins
eThe Arthur and Sonia Labatt Brain Tumour Research Centre (U.T., C.H.), The Hospital for Sick Children, Toronto, Ontario, Canada
gDepartment of Laboratory Medicine and Pathobiology (C.H.), University of Toronto, Toronto, Ontario, Canada
hDivision of Pathology (C.H.), The Hospital for Sick Children, Toronto, Ontario, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Cynthia Hawkins
Kristen Yeom
iDepartment of Radiology (K.Y.), Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Kristen Yeom
Farzad Khalvati
bDepartment of Medical Imaging (M.D.S., K.N., F.K., B.B.E.-W., M.W.W.), University of Toronto, Toronto, Ontario, Canada
cInstitute of Medical Science (M.D.S., K.N., U.T., F.K., B.B.E.-W.), University of Toronto, Toronto, Ontario, Canada
dVector Institute (K.N., F.K.), Toronto, Ontario, Canada
jDepartment of Computer Science (F.K.), University of Toronto, Toronto, Ontario, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Farzad Khalvati
Birgit B. Ertl-Wagner
aFrom the Department Diagnostic Imaging (M.D.S., B.B.E.-W., M.W.W.), Division of Neuroradiology, The Hospital for Sick Children, Toronto, Ontario, Canada
bDepartment of Medical Imaging (M.D.S., K.N., F.K., B.B.E.-W., M.W.W.), University of Toronto, Toronto, Ontario, Canada
cInstitute of Medical Science (M.D.S., K.N., U.T., F.K., B.B.E.-W.), University of Toronto, Toronto, Ontario, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Birgit B. Ertl-Wagner
Matthias W. Wagner
aFrom the Department Diagnostic Imaging (M.D.S., B.B.E.-W., M.W.W.), Division of Neuroradiology, The Hospital for Sick Children, Toronto, Ontario, Canada
bDepartment of Medical Imaging (M.D.S., K.N., F.K., B.B.E.-W., M.W.W.), University of Toronto, Toronto, Ontario, Canada
kDepartment of Diagnostic and Interventional Neuroradiology (M.W.W.), University Hospital Augsburg, Augsburg, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Matthias W. Wagner
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Ostrom QT,
    2. Price M,
    3. Neff C, et al
    . CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2015-2019. Neuro Oncol 2022;24:v1–95 doi:10.1093/neuonc/noac202 pmid:36196752
    CrossRefPubMed
  2. 2.↵
    1. Ryall S,
    2. Tabori U,
    3. Hawkins C
    . Pediatric low-grade glioma in the era of molecular diagnostics. Acta Neuropathol Commun 2020;8:30 doi:10.1186/s40478-020-00902-z pmid:32164789
    CrossRefPubMed
  3. 3.↵
    1. Bale TA,
    2. Rosenblum MK
    . The 2021 WHO Classification of Tumors of the Central Nervous System: an update on pediatric low‐grade gliomas and glioneuronal tumors. Brain Pathol 2022;32:e13060 doi:10.1111/bpa.13060 pmid:35218102
    CrossRefPubMed
  4. 4.↵
    1. Plant-Fox AS,
    2. O’Halloran K,
    3. Goldman S
    . Pediatric brain tumors: the era of molecular diagnostics, targeted and immune-based therapeutics, and a focus on long term neurologic sequelae. Curr Probl Cancer 2021;45:100777 doi:10.1016/j.currproblcancer.2021.100777 pmid:34303558
    CrossRefPubMed
  5. 5.↵
    1. Armstrong GT,
    2. Conklin HM,
    3. Huang S, et al
    . Survival and long-term health and cognitive outcomes after low-grade glioma. Neuro Oncol 2011;13:223–34 doi:10.1093/neuonc/noq178 pmid:21177781
    CrossRefPubMed
  6. 6.↵
    1. AlRayahi J,
    2. Zapotocky M,
    3. Ramaswamy V, et al
    . Pediatric brain tumor genetics: what radiologists need to know. RadioGraphics 2018;38:2102–22 doi:10.1148/rg.2018180109 pmid:30422762
    CrossRefPubMed
  7. 7.↵
    1. Chalil A,
    2. Ramaswamy V
    . Low-grade gliomas in children. J Child Neurol 2016;31:517–22 doi:10.1177/0883073815599259 pmid:26286938
    CrossRefPubMed
  8. 8.↵
    1. Engelhardt S,
    2. Behling F,
    3. Beschorner R, et al
    . Frequent FGFR1 hotspot alterations in driver-unknown low-grade glioma and mixed neuronal-glial tumors. J Cancer Res Clin Oncol 2022;148:857–66 doi:10.1007/s00432-021-03906-x pmid:35018490
    CrossRefPubMed
  9. 9.↵
    1. Bag AK,
    2. Chiang J,
    3. Patay Z
    . Radiohistogenomics of pediatric low-grade neuroepithelial tumors. Neuroradiology 2021;63:1185–213 doi:10.1007/s00234-021-02691-1 pmid:33779771
    CrossRefPubMed
  10. 10.↵
    1. Grob ST,
    2. Nobre L,
    3. Campbell KR, et al
    . Clinical and molecular characterization of a multi-institutional cohort of pediatric spinal cord low-grade gliomas. Neurooncol Adv 2020;2:vdaa103 doi:10.1093/noajnl/vdaa103 pmid:33063010
    CrossRefPubMed
  11. 11.↵
    1. Mhatre R,
    2. Sugur HS,
    3. Nandeesh BN, et al
    . MN1 rearrangement in astroblastoma: study of eight cases and review of literature. Brain Tumor Pathol 2019;36:112–20 doi:10.1007/s10014-019-00346-x pmid:31111274
    CrossRefPubMed
  12. 12.↵
    1. Moreira DC,
    2. Lam CG,
    3. Bhakta N, et al
    . Tackling pediatric low-grade gliomas: a global perspective. JCO Glob Oncol 2023;9:e2300017 doi:10.1200/GO.23.00017 pmid:37043711
    CrossRefPubMed
  13. 13.↵
    1. Vagvala S,
    2. Guenette JP,
    3. Jaimes C, et al
    . Imaging diagnosis and treatment selection for brain tumors in the era of molecular therapeutics. Cancer Imaging 2022;22:19 doi:10.1186/s40644-022-00455-5 pmid:35436952
    CrossRefPubMed
  14. 14.↵
    1. Ryall S,
    2. Zapotocky M,
    3. Fukuoka K, et al
    . Integrated molecular and clinical analysis of 1,000 pediatric low-grade gliomas. Cancer Cell 2020;37:569–83.e5 doi:10.1016/j.ccell.2020.03.011 pmid:32289278
    CrossRefPubMed
  15. 15.↵
    1. Nobre L,
    2. Zapotocky M,
    3. Ramaswamy V, et al
    . Outcomes of BRAF V600E pediatric gliomas treated with targeted BRAF inhibition. JCO Precis Oncol 2020;4:561–71 doi:10.1200/PO.19.00298 pmid:32923898
    CrossRefPubMed
  16. 16.↵
    1. Trasolini A,
    2. Erker C,
    3. Cheng S, et al
    . MR imaging of pediatric low-grade gliomas: pretherapeutic differentiation of BRAF V600E mutation, BRAF musion, and wild-type tumors in patients without neurofibromatosis-1. AJNR Am J Neuroradiol 2022;43:1196–201 doi:10.3174/ajnr.A7574 pmid:35863783
    Abstract/FREE Full Text
  17. 17.↵
    1. Wagner MW,
    2. Hainc N,
    3. Khalvati F, et al
    . Radiomics of pediatric low-grade gliomas: toward a pretherapeutic differentiation of BRAF-mutated and BRAF-fused tumors. AJNR Am J Neuroradiol 2021;42:759–65 doi:10.3174/ajnr.A6998 pmid:33574103
    Abstract/FREE Full Text
  18. 18.↵
    1. Madhogarhia R,
    2. Haldar D,
    3. Bagheri S, et al
    . Radiomics and radiogenomics in pediatric neuro-oncology: a review. Neurooncol Adv 2022;4:vdac083 doi:10.1093/noajnl/vdac083 pmid:35795472
    CrossRefPubMed
  19. 19.↵
    1. Zhang M,
    2. Wong SW,
    3. Wright JN, et al
    . MRI radiogenomics of pediatric medulloblastoma: a multicenter study. Radiology 2022;304:406–16 doi:10.1148/radiol.212137 pmid:35438562
    CrossRefPubMed
  20. 20.↵
    1. Guerrini F,
    2. Paolicchi M,
    3. Ghio F, et al
    . The Droplet Digital PCR: a new valid molecular approach for the assessment of B-RAF V600E mutation in hairy cell leukemia. Front Pharmacol 2016;7:363 doi:10.3389/fphar.2016.00363 pmid:27790140
    CrossRefPubMed
  21. 21.↵
    1. Fedorov A,
    2. Beichel R,
    3. Kalpathy-Cramer J, et al
    . 3D slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 2012;30:1323–41 doi:10.1016/j.mri.2012.05.001 pmid:22770690
    CrossRefPubMedWeb of Science
  22. 22.↵
    1. Parmar C,
    2. Velazquez ER,
    3. Leijenaar R, et al
    . Robust radiomics feature quantification using semiautomatic volumetric segmentation. PloS One 2014;9:e102107 doi:10.1371/journal.pone.0102107 pmid:25025374
    CrossRefPubMed
  23. 23.↵
    1. Li J,
    2. Liu S,
    3. Qin Y, et al
    . High-order radiomics features based on T2 FLAIR MRI predict multiple glioma immunohistochemical features: a more precise and personalized gliomas management. PLoS One 2020;15:e0227703 doi:10.1371/journal.pone.0227703 pmid:31968004
    CrossRefPubMed
  24. 24.↵
    1. Tustison NJ,
    2. Avants BB,
    3. Cook PA, et al
    . N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 2010;29:1310–20 doi:10.1109/TMI.2010.2046908 pmid:20378467
    CrossRefPubMedWeb of Science
  25. 25.↵
    1. Aerts HJ,
    2. Velazquez ER,
    3. Leijenaar RTH, et al
    . Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 2014;5:4006–09 doi:10.1038/ncomms5006 pmid:24892406
    CrossRefPubMed
  26. 26.↵
    1. Chaddad A,
    2. Kucharczyk MJ,
    3. Daniel P, et al
    . Radiomics in glioblastoma: current status and challenges facing clinical implementation. Front Oncol 2019;9:374 doi:10.3389/fonc.2019.00374 pmid:31165039
    CrossRefPubMed
  27. 27.↵
    1. Eun Park J,
    2. Sung Kim H
    . Radiomics as a quantitative imaging biomarker: practical considerations and the current standpoint in neuro-oncologic studies. Nucl Med Mol Imaging 2018;52:99–108 doi:10.1007/s13139-017-0512-7 pmid:29662558
    CrossRefPubMed
  28. 28.↵
    1. Breiman L
    . Bagging predictors. Mach Learn 1996;24:123–40 doi:10.1007/BF00058655
    CrossRefWeb of Science
  29. 29.↵
    1. Wagner M,
    2. Namdar K,
    3. Alqabbani A, et al
    . Dataset size sensitivity analysis of machine learning classifiers to differentiate molecular markers of pediatric low-grade gliomas based on MRI. Research Square 2021 Sept 17 [Epub ahead of print] doi:10.21203/rs.3.rs-883606/v1
    CrossRef
  30. 30.↵
    1. Faulkner C,
    2. Ellis HP,
    3. Shaw A, et al
    . BRAF fusion analysis in pilocytic astrocytomas: KIAA1549-BRAF 15-9 fusions are more frequent in the midline than within the cerebellum. J Neuropathol Exp Neurol 2015;74:867–72 doi:10.1097/NEN.0000000000000226 pmid:26222501
    CrossRefPubMed
  31. 31.↵
    1. Di Nunno V,
    2. Gatto L,
    3. Tosoni A, et al
    . Implications of BRAF V600E mutation in gliomas: molecular considerations, prognostic value and treatment evolution. Front Oncol 2022;12:1067252 doi:10.3389/fonc.2022.1067252 pmid:36686797
    CrossRefPubMed
  32. 32.↵
    1. Koh DM,
    2. Collins DJ
    . Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol 2007;188:1622–35 doi:10.2214/AJR.06.1403 pmid:17515386
    CrossRefPubMedWeb of Science
  33. 33.↵
    1. Guo AC,
    2. Cummings TJ,
    3. Dash RC, et al
    . Lymphomas and high-grade astrocytomas: comparison of water diffusibility and histologic characteristics. Radiology 2002;224:177–83 doi:10.1148/radiol.2241010637 pmid:12091680
    CrossRefPubMedWeb of Science
  34. 34.↵
    1. Doskaliyev A,
    2. Yamasaki F,
    3. Ohtaki M, et al
    . Lymphomas and glioblastomas: Differences in the apparent diffusion coefficient evaluated with high b-value diffusion-weighted magnetic resonance imaging at 3T. Eur J Radiol 2012;81:339–44 doi:10.1016/j.ejrad.2010.11.005 pmid:21129872
    CrossRefPubMed
  35. 35.↵
    1. Shrot S,
    2. Kerpel A,
    3. Belenky J, et al
    . MR imaging characteristics and ADC histogram metrics for differentiating molecular subgroups of pediatric low-grade gliomas. AJNR Am J Neuroradiol 2022;43:1356–62 doi:10.3174/ajnr.A7614 pmid:36007944
    Abstract/FREE Full Text
  36. 36.↵
    1. Kolossváry M,
    2. Karády J,
    3. Kikuchi Y, et al
    . Radiomics versus visual and histogram-based assessment to identify atheromatous lesions at coronary CT angiography: an ex vivo study. Radiology 2019;293:89–96 doi:10.1148/radiol.2019190407 pmid:31385755
    CrossRefPubMed
  37. 37.↵
    1. Capobianco E,
    2. Deng J
    . Radiomics at a glance: a few lessons learned from learning approaches. Cancers (Basel) 2020;12:2453 doi:10.3390/cancers12092453 pmid:32872466
    CrossRefPubMed
  38. 38.↵
    1. Namdar K,
    2. Wagner MW,
    3. Ertl-Wagner BB,
    4. Khalvati F
    . Open-radiomics: a collection of standardized datasets and a technical protocol for reproducible radiomics machine learning pipelines. arXiv July 29 [Epub ahead of print]. https://arxiv.org/abs/2207.14776
  39. 39.↵
    1. Lam LH,
    2. Do DT,
    3. Diep DT, et al
    . Molecular subtype classification of low-grade gliomas using magnetic resonance imaging-based radiomics and machine learning. NMR Biomed 2022;35:e4792 doi:10.1002/nbm.4792 pmid:35767281
    CrossRefPubMed
  40. 40.↵
    1. Manoharan N,
    2. Liu KX,
    3. Mueller S,
    4. Haas-Kogan DA,
    5. Bandopadhayay P
    . Pediatric low-grade glioma: Targeted therapeutics and clinical trials in the molecular era. Neoplasia 2023;36:100857 doi:10.1016/j.neo.2022.100857 pmid:36566593
    CrossRefPubMed
  41. 41.↵
    1. Ramaglia A,
    2. Tortora D,
    3. Mankad K, et al
    . Role of diffusion weighted imaging for differentiating cerebral pilocytic astrocytoma and ganglioglioma BRAF V600E-mutant from wild type. Neuroradiology 2020;62:71–80 doi:10.1007/s00234-019-02304-y pmid:31667545
    CrossRefPubMed
  42. 42.↵
    1. Kan P,
    2. Liu JK,
    3. Hedlund G, et al
    . The role of diffusion-weighted magnetic resonance imaging in pediatric brain tumors. Childs Nerv Syst 2006;22:1435–39 doi:10.1007/s00381-006-0229-x pmid:17021722
    CrossRefPubMedWeb of Science
  43. 43.↵
    1. Erickson BJ,
    2. Korfiatis P,
    3. Akkus Z, et al
    . Machine learning for medical imaging. Radiographics 2017;37:505–15 doi:10.1148/rg.2017160130 pmid:28212054
    CrossRefPubMed
  44. 44.↵
    1. Li Y,
    2. Kim MM,
    3. Wahl DR, et al
    . Survival prediction analysis in glioblastoma with diffusion kurtosis imaging. Front Oncol 2021;11:690036 doi:10.3389/fonc.2021.690036 pmid:34336676
    CrossRefPubMed
  45. 45.↵
    1. Wu CC,
    2. Jain R,
    3. Radmanesh A, et al
    . Predicting genotype and survival in glioma using standard clinical MR imaging apparent diffusion coefficient images: a pilot study from The Cancer Genome Atlas. AJNR Am J Neuroradiol 2018;39:1814–20 doi:10.3174/ajnr.A5794 pmid:30190259
    Abstract/FREE Full Text
  46. 46.↵
    1. Ho CY,
    2. Mobley BC,
    3. Gordish-Dressman H, et al
    . A clinicopathologic study of diencephalic pediatric low-grade gliomas with BRAF V600 mutation. Acta Neuropatho 2015;130:575–85 doi:10.1007/s00401-015-1467-3 pmid:26264609
    CrossRefPubMed
  47. 47.↵
    1. Cho HH,
    2. Lee SH,
    3. Hak Kim J, et al
    . Classification of the glioma grading using radiomics analysis. PeerJ 2018;6:e5982 doi:10.7717/peerj.5982 pmid:30498643
    CrossRefPubMed
  48. 48.↵
    1. Widhiarso W,
    2. Yohannes Y,
    3. Prakarsah C
    . Brain tumor classification using gray level co-occurrence matrix and convolutional neural network. Indonesian J Electron Instrum Syst 2018;8:179–90 doi:10.22146/ijeis.34713
    CrossRef
  49. 49.↵
    1. Chekouo T,
    2. Mohammed S,
    3. Rao A
    . A Bayesian 2D functional linear model for gray-level co-occurrence matrices in texture analysis of lower grade gliomas. Neuroimage Clin 2020;28:102437 doi:10.1016/j.nicl.2020.102437 pmid:33035963
    CrossRefPubMed
  50. 50.↵
    1. Zachariah RM,
    2. Priya PS,
    3. Pendem S
    . Classification of low- and high-grade gliomas using radiomic analysis of multiple sequences of MRI brain. J Cancer Res Ther 2023;19:435–46 doi:10.4103/jcrt.jcrt_1581_22 pmid:37313916
    CrossRefPubMed
  51. 51.↵
    1. Xu J,
    2. Lai M,
    3. Li S, et al
    . Radiomics features based on MRI predict BRAF V600E mutation in pediatric low-grade gliomas: a non-invasive method for molecular diagnosis. Clin Neurol Neurosurg 2022;222:107478 doi:10.1016/j.clineuro.2022.107478 pmid:36244075
    CrossRefPubMed
  52. 52.↵
    1. Mårtensson G,
    2. Ferreira D,
    3. Granberg T, et al
    . The reliability of a deep learning model in clinical out-of-distribution MRI data: amulticohort study. Med Image Anal 2020;66:101714 doi:10.1016/j.media.2020.101714 pmid:33007638
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 45 (6)
American Journal of Neuroradiology
Vol. 45, Issue 6
1 Jun 2024
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Identification of Multiclass Pediatric Low-Grade Neuroepithelial Tumor Molecular Subtype with ADC MR Imaging and Machine Learning
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Matheus D. Soldatelli, Khashayar Namdar, Uri Tabori, Cynthia Hawkins, Kristen Yeom, Farzad Khalvati, Birgit B. Ertl-Wagner, Matthias W. Wagner
Identification of Multiclass Pediatric Low-Grade Neuroepithelial Tumor Molecular Subtype with ADC MR Imaging and Machine Learning
American Journal of Neuroradiology Jun 2024, 45 (6) 753-760; DOI: 10.3174/ajnr.A8199

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
PEDS Low-Grade Neuroepithelial Tumor Subtypes
Matheus D. Soldatelli, Khashayar Namdar, Uri Tabori, Cynthia Hawkins, Kristen Yeom, Farzad Khalvati, Birgit B. Ertl-Wagner, Matthias W. Wagner
American Journal of Neuroradiology Jun 2024, 45 (6) 753-760; DOI: 10.3174/ajnr.A8199
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Segmentation-Free Pretherapeutic Assessment of BRAF-Status in Pediatric Low-Grade Gliomas
  • Crossref (1)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Radiogenomics: bridging the gap between imaging and genomics for precision oncology
    Wenle He, Wenhui Huang, Lu Zhang, Xuewei Wu, Shuixing Zhang, Bin Zhang
    MedComm 2024 5 9

More in this TOC Section

  • fetal brain development of 10 weeks gestation
  • CHARGE fetal MRI clival cleft
  • Neuroimaging Delineation and Progression of SLSMD
Show more Pediatric Neuroimaging

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire