Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleArtificial Intelligence
Open Access

Compressed Sensitivity Encoding Artificial Intelligence Accelerates Brain Metastasis Imaging by Optimizing Image Quality and Reducing Scan Time

Mengmeng Wang, Yue Ma, Linna Li, Xingchen Pan, Yafei Wen, Ying Qiu, Dandan Guo, Yi Zhu, Jianxiu Lian and Dan Tong
American Journal of Neuroradiology April 2024, 45 (4) 444-452; DOI: https://doi.org/10.3174/ajnr.A8161
Mengmeng Wang
aFrom the Department of Radiology (M.W., Y.M., L.L., X.P., Y.W., Y.Q., D.G., D.T.), The First Hospital of Jilin University, Changchun, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Mengmeng Wang
Yue Ma
aFrom the Department of Radiology (M.W., Y.M., L.L., X.P., Y.W., Y.Q., D.G., D.T.), The First Hospital of Jilin University, Changchun, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Yue Ma
Linna Li
aFrom the Department of Radiology (M.W., Y.M., L.L., X.P., Y.W., Y.Q., D.G., D.T.), The First Hospital of Jilin University, Changchun, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Linna Li
Xingchen Pan
aFrom the Department of Radiology (M.W., Y.M., L.L., X.P., Y.W., Y.Q., D.G., D.T.), The First Hospital of Jilin University, Changchun, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Xingchen Pan
Yafei Wen
aFrom the Department of Radiology (M.W., Y.M., L.L., X.P., Y.W., Y.Q., D.G., D.T.), The First Hospital of Jilin University, Changchun, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Yafei Wen
Ying Qiu
aFrom the Department of Radiology (M.W., Y.M., L.L., X.P., Y.W., Y.Q., D.G., D.T.), The First Hospital of Jilin University, Changchun, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Ying Qiu
Dandan Guo
aFrom the Department of Radiology (M.W., Y.M., L.L., X.P., Y.W., Y.Q., D.G., D.T.), The First Hospital of Jilin University, Changchun, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Dandan Guo
Yi Zhu
bPhilips Healthcare (Y.Z., J.L., D.T.), Beijing, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Yi Zhu
Jianxiu Lian
bPhilips Healthcare (Y.Z., J.L., D.T.), Beijing, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jianxiu Lian
Dan Tong
aFrom the Department of Radiology (M.W., Y.M., L.L., X.P., Y.W., Y.Q., D.G., D.T.), The First Hospital of Jilin University, Changchun, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Dan Tong
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. ↵
    1. Kaufmann TJ,
    2. Smits M,
    3. Boxerman J, et al
    . Consensus recommendations for a standardized brain tumor imaging protocol for clinical trials in brain metastases. Neuro Oncol 2020;22:757–72 doi:10.1093/neuonc/noaa030 pmid:32048719
    CrossRefPubMed
  2. ↵
    1. Li R,
    2. Guo Y,
    3. Zhao Z, et al
    . MRI-based two-stage deep learning model for automatic detection and segmentation of brain metastases. Eur Radiology 2023;33:3521–31 doi:10.1007/s00330-023-09420-7 pmid:36695903
    CrossRefPubMed
  3. ↵
    1. Derks SH,
    2. van der Veldt AA,
    3. Smits M
    . Brain metastases: the role of clinical imaging. Br J Radiology 2022;95:20210944 doi:10.1259/bjr.20210944 pmid:34808072
    CrossRefPubMed
  4. ↵
    1. Villanueva-Meyer JE,
    2. Mabray MC,
    3. Cha S
    . Current clinical brain tumor imaging. Neurosurgery 2017;81:397–415 doi:10.1093/neuros/nyx103 pmid:28486641
    CrossRefPubMed
  5. ↵
    1. Kim D,
    2. Heo YJ,
    3. Jeong HW, et al
    . Usefulness of the delay alternating with nutation for tailored excitation pulse with T1-weighted sampling perfection with application-optimized contrasts using different flip angle evolution in the detection of cerebral metastases: Comparison with MPRAGE imaging. AJNR Am J Neuroradiol 2019;40:1469–75 doi:10.3174/ajnr.A6158 pmid:31371358
    Abstract/FREE Full Text
  6. ↵
    1. Langer CJ,
    2. Mehta MP
    . Current management of brain metastases, with a focus on systemic options. J Clin Oncol 2005;23:6207–19 doi:10.1200/JCO.2005.03.145 pmid:16135488
    Abstract/FREE Full Text
  7. ↵
    1. Vranic JE,
    2. Cross NM,
    3. Wang Y, et al
    . Compressed sensing-sensitivity encoding (CS-SENSE) accelerated brain imaging: reduced scan time without reduced image quality. AJNR Am J Neuroradiol 2019;40:92–98 doi:10.3174/ajnr.A5905 pmid:30523142
    Abstract/FREE Full Text
  8. ↵
    1. Duan Y,
    2. Zhang J,
    3. Zhuo Z, et al
    . Accelerating brain 3D T1-weighted turbo field echo MRI using compressed sensing-sensitivity encoding (CS-SENSE). Eur J Radiology 2020;131:109255 doi:10.1016/j.ejrad.2020.109255 pmid:32920218
    CrossRefPubMed
  9. ↵
    1. Sasi SD,
    2. Ramaniharan AK,
    3. Bhattacharjee R, et al
    . Evaluating feasibility of high resolution T1-perfusion MRI with whole brain coverage using compressed SENSE: Application to glioma grading. Eur J Radiology 2020;129:109049 doi:10.1016/j.ejrad.2020.109049 pmid:32464580
    CrossRefPubMed
  10. ↵
    1. Boyarko AC,
    2. Dillman JR,
    3. Tkach JA, et al
    . Comparison of compressed SENSE and SENSE for quantitative liver MRI in children and young adults. Abdom Radiology (NY) 2021;46:4567–75 doi:10.1007/s00261-021-03092-x pmid:33893853
    CrossRefPubMed
  11. ↵
    1. Cho SJ,
    2. Choi YJ,
    3. Chung SR, et al
    . High-resolution MRI using compressed sensing-sensitivity encoding (CS-SENSE) for patients with suspected neurovascular compression syndrome: comparison with the conventional SENSE parallel acquisition technique. Clin Radiology 2019;74:817.e9–e14 doi:10.1016/j.crad.2019.06.023 pmid:31362886
    CrossRefPubMed
  12. ↵
    1. Hsiao A,
    2. Lustig M,
    3. Alley MT, et al
    . Evaluation of valvular insufficiency and shunts with parallel-imaging compressed-sensing 4D phase-contrast MR imaging with stereoscopic 3D velocity-fusion volume-rendered visualization. Radiology 2012;265:87–95 doi:10.1148/radiol.12120055 pmid:22923717
    CrossRefPubMed
  13. ↵
    1. Knoll F,
    2. Zbontar J,
    3. Sriram A, et al
    . fastMRI: A publicly available raw k-Space and DICOM dataset of knee images for accelerated MR image reconstruction using machine learning. Radiology Artif Intell 2020;2:e190007 doi:10.1148/ryai.2020190007 pmid:32076662
    CrossRefPubMed
  14. ↵
    1. Knoll F,
    2. Murrell T,
    3. Sriram A, et al
    . Advancing machine learning for MR image reconstruction with an open competition: Overview of the 2019 fastMRI challenge. Magn Reson Med 2020;84:3054–70 doi:10.1002/mrm.28338 pmid:32506658
    CrossRefPubMed
  15. ↵
    1. Pezzotti N,
    2. Yousefi S,
    3. Elmahdy MS, et al
    . An adaptive intelligence algorithm for undersampled knee MRI reconstruction. IEEE Access 2020;8:204825–38 doi:10.1109/ACCESS.2020.3034287
    CrossRef
  16. ↵
    1. Foreman SC,
    2. Neumann J,
    3. Han J, et al
    . Deep learning-based acceleration of compressed sense MR imaging of the ankle. Eur Radiology 2022;32:8376–85 doi:10.1007/s00330-022-08919-9 pmid:35751695
    CrossRefPubMed
  17. ↵
    1. Fervers P,
    2. Zaeske C,
    3. Rauen P, et al
    . Conventional and deep-learning-based image reconstructions of undersampled K-space data of the lumbar spine using compressed sensing in MRI: A comparative study on 20 subjects. Diagnostics (Basel) 2023;13:418 doi:10.3390/diagnostics13030418 pmid:36766523
    CrossRefPubMed
  18. ↵
    1. Dratsch T,
    2. Siedek F,
    3. Zäske C, et al
    . Reconstruction of shoulder MRI using deep learning and compressed sensing: a validation study on healthy volunteers. Eur Radiology Exp 2023;7:66 doi:10.1186/s41747-023-00377-2 pmid:37880546
    CrossRefPubMed
  19. ↵
    1. Ni M,
    2. He M,
    3. Yang Y, et al
    . Application research of AI-assisted compressed sensing technology in MRI scanning of the knee joint: 3D-MRI perspective. Eur Radiology 2023 doi:10.1007/s00330-023-10368-x pmid:37932390
    CrossRefPubMed
  20. ↵
    1. Dietrich O,
    2. Raya JG,
    3. Reeder SB, et al
    . Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging 2007;26:375–85 doi:10.1002/jmri.20969 pmid:17622966
    CrossRefPubMed
  21. ↵
    1. Kakeda S,
    2. Korogi Y,
    3. Hiai Y, et al
    . Detection of brain metastasis at 3T: comparison among SE, IR-FSE and 3D-GRE sequences. Eur Radiology 2007;17:2345–51 doi:10.1007/s00330-007-0599-9 pmid:17318603
    CrossRefPubMed
  22. ↵
    1. Conklin J,
    2. Longo MGF,
    3. Cauley SF, et al
    . Validation of highly accelerated wave-CAIPI SWI compared with conventional SWI and T2*-weighted gradient recalled-echo for routine clinical brain MRI at 3T. AJNR Am J Neuroradiol 2019;40:2073–80 doi:10.3174/ajnr.A6295 pmid:31727749
    Abstract/FREE Full Text
  23. ↵
    1. Chung MS,
    2. Yim Y,
    3. Sung JK, et al
    . CS-VIBE accelerates cranial nerve MR imaging for the diagnosis of facial neuritis: comparison of the diagnostic performance of post-contrast MPRAGE and CS-VIBE. Eur Radiology 2022;32:223–33 doi:10.1007/s00330-021-08102-6 pmid:34156555
    CrossRefPubMed
  24. ↵
    1. Jin T,
    2. Zhang H,
    3. Liu X, et al
    . Enhancement degree of brain metastases: correlation analysis between enhanced T2 FLAIR and vascular permeability parameters of dynamic contrast-enhanced MRI. Eur Radiology 2021;31:5595–604 doi:10.1007/s00330-020-07625-8 pmid:33847812
    CrossRefPubMed
  25. ↵
    1. Ercan N,
    2. Gultekin S,
    3. Celik H, et al
    . Diagnostic value of contrast-enhanced fluid-attenuated inversion recovery MR imaging of intracranial metastases. AJNR Am J Neuroradiol 2004;25:761–65 pmid:15140715
    PubMed
  26. ↵
    1. Toledano-Massiah S,
    2. Sayadi A,
    3. de Boer R, et al
    . Accuracy of the compressed sensing accelerated 3D-FLAIR sequence for the detection of MS plaques at 3T. AJNR Am J Neuroradiol 2018;39:454–58 doi:10.3174/ajnr.A5517 pmid:29348137
    Abstract/FREE Full Text
  27. ↵
    1. Dieckmeyer M,
    2. Roy AG,
    3. Senapati J, et al
    . Effect of MRI acquisition acceleration via compressed sensing and parallel imaging on brain volumetry. MAGMA 2021;34:487–97 doi:10.1007/s10334-020-00906-9 pmid:33502667
    CrossRefPubMed
  28. ↵
    1. Schlemper J,
    2. Caballero J,
    3. Hajnal JV, et al
    . A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans Med Imaging 2018;37:491–503 doi:10.1109/TMI.2017.2760978 pmid:29035212
    CrossRefPubMed
  29. ↵
    1. Gu H,
    2. Yaman B,
    3. Moeller S, et al
    . Revisiting [Formula: see text]-wavelet compressed-sensing MRI in the era of deep learning. Proc Natl Acad Sci U S A 2022;119:e2201062119 doi:10.1073/pnas.2201062119 pmid:35939712
    CrossRefPubMed
  30. ↵
    1. Bash S,
    2. Wang L,
    3. Airriess C, et al
    . Deep learning enables 60% accelerated volumetric brain MRI while preserving quantitative performance: A prospective, multicenter, multireader trial. AJNR Am J Neuroradiol 2021;42:2130–37 doi:10.3174/ajnr.A7358 pmid:34824098
    Abstract/FREE Full Text
  31. ↵
    1. Park JC,
    2. Park KJ,
    3. Park MY, et al
    . Fast T2-weighted imaging with deep learning-based reconstruction: Evaluation of image quality and diagnostic performance in patients undergoing radical prostatectomy. J Magn Reson Imaging 2022;55:1735–44 doi:10.1002/jmri.27992 pmid:34773449
    CrossRefPubMed
  32. ↵
    1. Zhao Y,
    2. Peng C,
    3. Wang S, et al
    . The feasibility investigation of AI-assisted compressed sensing in kidney MR imaging: an ultra-fast T2WI imaging technology. BMC Med Imaging 2022;22:119 doi:10.1186/s12880-022-00842-1 pmid:35787673
    CrossRefPubMed
  33. ↵
    1. Sheng RF,
    2. Zheng LY,
    3. Jin KP, et al
    . Single-breath-hold T2WI liver MRI with deep learning-based reconstruction: A clinical feasibility study in comparison to conventional multi-breath-hold T2WI liver MRI. Magn Reson Imaging 2021;81:75–81 doi:10.1016/j.mri.2021.06.014 pmid:34147594
    CrossRefPubMed
  34. ↵
    1. Zhang N,
    2. Zhang H,
    3. Gao B, et al
    . 3D amide proton transfer weighted brain tumor imaging with compressed SENSE: Effects of different acceleration factors. Front Neurosci 2022;16:876587 doi:10.3389/fnins.2022.876587 pmid:35692419
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 45 (4)
American Journal of Neuroradiology
Vol. 45, Issue 4
1 Apr 2024
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Compressed Sensitivity Encoding Artificial Intelligence Accelerates Brain Metastasis Imaging by Optimizing Image Quality and Reducing Scan Time
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Mengmeng Wang, Yue Ma, Linna Li, Xingchen Pan, Yafei Wen, Ying Qiu, Dandan Guo, Yi Zhu, Jianxiu Lian, Dan Tong
Compressed Sensitivity Encoding Artificial Intelligence Accelerates Brain Metastasis Imaging by Optimizing Image Quality and Reducing Scan Time
American Journal of Neuroradiology Apr 2024, 45 (4) 444-452; DOI: 10.3174/ajnr.A8161

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
AI for Accelerating Brain Metastasis Imaging
Mengmeng Wang, Yue Ma, Linna Li, Xingchen Pan, Yafei Wen, Ying Qiu, Dandan Guo, Yi Zhu, Jianxiu Lian, Dan Tong
American Journal of Neuroradiology Apr 2024, 45 (4) 444-452; DOI: 10.3174/ajnr.A8161
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Real-World Adoption of Artificial Intelligence in Radiology: Opportunities and Barriers
  • Crossref (1)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Real-World Adoption of Artificial Intelligence in Radiology: Opportunities and Barriers
    Reza Forghani
    American Journal of Neuroradiology 2024 45 9

More in this TOC Section

  • AI-Enhanced Photon-Counting CT of Temporal Bone
  • DIRDL for Inflammatory Myelopathies
  • An AI De-identification Method for Pediatric MRIs
Show more Artificial Intelligence

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire