Open Access

A Radiomic “Warning Sign” of Progression on Brain MRI in Individuals with MS

Brendan S. Kelly, Prateek Mathur, Gerard McGuinness, Henry Dillon, Edward H. Lee, Kristen W. Yeom, Aonghus Lawlor and Ronan P. Killeen

Article Figures & Data

Figures

  • FIG 1.

    Flow chart of included patients.

  • FIG 2.

    Prelesion and control masks. Expert segmentation mask at time b (tb) is projected backward to time a (ta) to the location where a lesion will occur (prelesion, red) and the other random areas in the NAWM (control, green). Note that this 2D representation is for illustrative purposes only, and for the experiments, the random translation was in 3D.

  • FIG 3.

    Radiomics workflow in which features are extracted from the segmented regions and passed to the machine learning models.

  • FIG 4.

    Top 5 radiomic features identified by the top performing XGBoost model.

  • FIG 5.

    Illustrative probability maps showing the absolute (A, Upper row) and relative (B, Lower row) probability of a new lesion occurring in each patch.

  • FIG 6.

    False-negative analysis (A and B, Upper row, C–E, Lower row). Two of the 3 false-negative cases in the external validation set are shown. A and B, The new lesion map falls within the ventricle on the prior image, making a negative prediction more likely because the low gray levels were associated with negative predictions (Fig 4). C, D, and E, The orientation of the proximal left trigeminal nerve is different so that the segmentation is cast onto the normal brainstem instead.

Tables

  • Table 1:

    Patient demographics

    Demographics
    Total participants147
    Average age (yr)42.19
     Min21
     Max74
    Sex
     Male 45
     Female 102
    • Note:—Max indicates maximum; Min, minimum.

  • Table 2: Internal test cohort results

    ModelPrecisionRecallF1-ScoreAccuracyBest Parameters
    XGBoost0.910.910.910.91{'classifier__colsample_bylevel': 0.8, 'classifier__gamma': 0, 'classifier__learning_rate': 0.2, 'classifier__max_depth': 4, 'classifier__min_child_weight': 1, 'classifier__n_estimators': 100, 'classifier__subsample': 0.5}
    SVC0.900.890.890.89{'classifier__C': 10, 'classifier__kernel': 'rbf'}
    Logistic regression0.810.780.780.78{'classifier__C': 1, 'classifier__penalty': 'l1', 'classifier__solver': 'liblinear'}
    KNN0.830.780.780.78{'classifier__n_neighbors': 7}
    Intensity baseline0.760.770.750.77NA
    • Note:—SVC indicates support vector classifier; KNN, K nearest neighbor; NA, not applicable.

  • Table 3:

    External validation cohort results

    ModelPrecisionRecallF1-ScoreAccuracyBest Parameters
    XGBoost0.740.740.700.74{'classifier__colsample_bylevel': 0.8, 'classifier__gamma': 0, 'classifier__learning_rate': 0.2, 'classifier__max_depth': 4, 'classifier__min_child_weight': 1, 'classifier__n_estimators': 100, 'classifier__subsample': 0.5}
    SVC0.690.710.680.71{'classifier__C': 10, 'classifier__kernel': 'rbf'}
    Logistic regression0.620.550.560.55{'classifier__C': 1, 'classifier__penalty': 'l1', 'classifier__solver': 'liblinear'}
    KNN0.510.420.430.42{'classifier__n_neighbors': 7}
    Intensity baseline0.250.500.330.50NA
    • Note:—SVC indicates support vector classifier; KNN, K nearest neighbor; NA, not applicable.

Advertisement