Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Review ArticleArtificial Intelligence
Open Access

Ethical Considerations and Fairness in the Use of Artificial Intelligence for Neuroradiology

C.G. Filippi, J.M. Stein, Z. Wang, S. Bakas, Y. Liu, P.D. Chang, Y. Lui, C. Hess, D.P. Barboriak, A.E. Flanders, M. Wintermark, G. Zaharchuk and O. Wu
American Journal of Neuroradiology November 2023, 44 (11) 1242-1248; DOI: https://doi.org/10.3174/ajnr.A7963
C.G. Filippi
aFrom the Department of Radiology (C.G.F.), Tufts University School of Medicine, Boston, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C.G. Filippi
J.M. Stein
bDepartment of Radiology (J.M.S., S.B.), University of Pennsylvania, Philadelphia, Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J.M. Stein
Z. Wang
cAthinoula A. Martinos Center for Biomedical Imaging (Z.W., Y. Liu, O.W.), Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Z. Wang
S. Bakas
bDepartment of Radiology (J.M.S., S.B.), University of Pennsylvania, Philadelphia, Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S. Bakas
Y. Liu
cAthinoula A. Martinos Center for Biomedical Imaging (Z.W., Y. Liu, O.W.), Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Y. Liu
P.D. Chang
dDepartment of Radiological Sciences (P.D.C.), University of California, Irvine, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for P.D. Chang
Y. Lui
eDepartment of Neuroradiology (Y. Lui), NYU Langone Health, New York, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Y. Lui
C. Hess
fDepartment of Radiology and Biomedical Imaging (C.H.), University of California, San Francisco, San Francisco, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C. Hess
D.P. Barboriak
gDepartment of Radiology (D.P.B.), Duke University School of Medicine, Durham, North Carolina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for D.P. Barboriak
A.E. Flanders
hDepartment of Neuroradiology/Otolaryngology (ENT) Radiology (A.E.F.), Thomas Jefferson University, Philadelphia, Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A.E. Flanders
M. Wintermark
iDepartment of Neuroradiology (M.W.), Division of Diagnostic Imaging, MD Anderson Cancer Center, Houston, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Wintermark
G. Zaharchuk
jDepartment of Radiology (G.Z.), Stanford University, Stanford, California.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for G. Zaharchuk
O. Wu
cAthinoula A. Martinos Center for Biomedical Imaging (Z.W., Y. Liu, O.W.), Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for O. Wu
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Geis JR,
    2. Brady AP,
    3. Wu CC, et al
    . Ethics of Artificial Intelligence in Radiology: Summary of the Joint European and North American Multisociety Statement. Radiology 2019;293:436–40 doi:10.1148/radiol.2019191586 pmid:31573399
    CrossRefPubMed
  2. 2.↵
    “Ethics”. Merriam-Webster.com Dictionary. Merriam-Webster, Inc. http://www.merriam-webster.com/dictionary/ethics. Accessed January 3, 2023
  3. 3.↵
    1. Panch T,
    2. Mattie H,
    3. Atun R
    . Artificial intelligence and algorithmic bias: implications for health systems. J Glob Health 2019;9:010318 doi:10.7189/jogh.09.020318 pmid:31788229
    CrossRefPubMed
  4. 4.↵
    “Fairness”. Merriam-Webster.com Dictionary. Merriam-Webster, Inc. http://www.merriam-webster.com/dictionary/fairness. Accessed January 3, 2023
  5. 5.↵
    1. Dwork C,
    2. Hardt M,
    3. Pitassi T, et al
    . Fairness through awareness. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, Cambridge, Massachusetts. January 8–10, 2012 doi:10.1145/2090236.2090255
  6. 6.↵
    1. Crawford K
    . The trouble with bias. NIPS 2017;10 https://www.youtube.com/watch?v=fMym_BKWQzk. Accessed January 3, 2023
  7. 7.↵
    1. Abbasi M,
    2. Friedler SA,
    3. Scheidegger C, et al
    . Fairness in representation: quantifying stereotyping as a representational harm. In: Proceedings of the 2019 SIAM International Conference on Data Mining: SIAM, Calgary, Alberta, Canada, May 2–4, 2019
  8. 8.↵
    1. Amini A,
    2. Soleimany AP,
    3. Schwarting W, et al
    . Uncovering and mitigating algorithmic bias through learned latent structure. In: Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society 2019;289–95 doi:10.1145/3306618.3314243
    CrossRef
  9. 9.↵
    Association for Computing Machinery. ACM Conference on Fairness, Accountability, and Transparency (ACM FAccT), Soeul, South Korea. June 21–24, 2022
  10. 10.↵
    1. Jillson E
    . Aiming for truth, fairness, and equity in your company's use of AI. Business Blog Federal Trade Commision. April 19, 2021. https://www.ftc.gov/business-guidance/blog/2021/04/aiming-truth-fairness-equity-your-companys-use-ai. Accessed January 5, 2023
  11. 11.↵
    Algorithmic Accountability Act of 2022. HR 6580. 117th Congress, 2021–2022
  12. 12.↵
    1. Chouldechova A
    . Fair prediction with disparate impact: a study of bias in recidivism prediction instruments. Big Data 2017;5:153–63 doi:10.1089/big.2016.0047 pmid:28632438
    CrossRefPubMed
  13. 13.↵
    1. Kleinberg J,
    2. Mullainathan S,
    3. Raghavan M
    . Inherent trade-offs in the fair determination of risk scores. In: Proceedings of the 8th Innovations in Theoretical Computer Science Conference (ITCS 2017), Berkeley, California. January 9–11, 2017. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik
  14. 14.↵
    1. Corbett-Davies S,
    2. Goel S
    . The measure and mismeasure of fairness: a critical review of fair machine learning. arXiv 2018 arXiv:180800023
  15. 15.↵
    1. Verma S,
    2. Rubin J
    . Fairness definitions explained. In: Proceedings of the 2018 IEEE/ACM International Workshop on Software Fairness (Fairware). IEEE Xplore 2018;1–7 doi:10.1145/3194770.3194776
    CrossRef
  16. 16.↵
    1. Rajkomar A,
    2. Hardt M,
    3. Howell MD, et al
    . Ensuring fairness in machine learning to advance health equity. Ann Intern Med 2018;169:866–72 doi:10.7326/M18-1990 pmid:30508424
    CrossRefPubMed
  17. 17.↵
    1. Lundberg SM,
    2. Lee SI
    . A unified approach to interpreting model predictions. arXiv 1705.07874 May 22, 2017
  18. 18.↵
    1. Lundberg SM
    . Explaining quantitative measures of fairness. In: Proceedings of the Fair & Responsible AI Workshop. CHI ‘20: CHI Conference on Human Factors in Computing Systems, Honolulu, Hawaii. April 25–30, 2020
  19. 19.↵
    1. Zhao J,
    2. Wang T,
    3. Yatskar M, et al
    . Men also like shopping: reducing gender bias amplification using corpus-level constraints. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen, Denmark. September 7–11, 2017
  20. 20.↵
    1. Zou J,
    2. Schiebinger L
    . AI can be sexist and racist: it's time to make it fair. Nature 2018;559:324–26 doi:10.1038/d41586-018-05707-8 pmid:30018439
    CrossRefPubMed
  21. 21.↵
    1. Sweeney L
    . Discrimination in online ad delivery. Communications of the ACM 2013;56:44–54 doi:10.1145/2447976.2447990
    CrossRef
  22. 22.↵
    1. Buolamwini J,
    2. Gebru T
    . Gender shades: intersectional accuracy disparities in commercial gender classification. In: Proceedings of the Conference on Fairness, Accountability and Transparency, New York, New York. February 23–24, 2018;77–91
  23. 23.↵
    1. Angwin J,
    2. Larson J,
    3. Matta S, et al
    . Machine bias: there's software used across the country to predict future criminals. and it's biased against Blacks. ProPublica May 23, 2016 https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing. Accessed January 6, 2023
  24. 24.↵
    1. Benjamin R
    . The New Jim code: reimagining the default settings of technology & society. Race and technology: A Research Lecture Series. May 1, 2021 to June 30, 2022. Virtual https://www.youtube.com/watch?v=aMuD_lAy2zQ. Accessed July 24, 2022
  25. 25.↵
    1. Gunzer F,
    2. Jantscher M,
    3. Hassler EM, et al
    . Reproducibility of artificial intelligence models in computed tomography of the head: a quantitative analysis. Insights Imaging 2022;13:173 doi:10.1186/s13244-022-01311-7 pmid:36303079
    CrossRefPubMed
  26. 26.↵
    1. Din M,
    2. Agarwal S,
    3. Grzeda M, et al
    . Detection of cerebral aneurysms using artificial intelligence: a systematic review and meta-analysis. J Neurointerv Surg 2023;15:262–71 doi:10.1136/jnis-2022-019456 pmid:36375834
    Abstract/FREE Full Text
  27. 27.↵
    1. McLouth J,
    2. Elstrott S,
    3. Chaibi Y, et al
    . Validation of a deep learning tool in the detection of intracranial hemorrhage and large vessel occlusion. Front Neurol 2021;12:656112 doi:10.3389/fneur.2021.656112 pmid:33995252
    CrossRefPubMed
  28. 28.↵
    1. Guo J,
    2. Gong E,
    3. Fan AP, et al
    . Predicting (15)O-Water PET cerebral blood flow maps from multi-contrast MRI using a deep convolutional neural network with evaluation of training cohort bias. J Cereb Blood Flow Metab 2020;40:2240–53 doi:10.1177/0271678X19888123 pmid:31722599
    CrossRefPubMed
  29. 29.↵
    1. Gao MM,
    2. Wang J,
    3. Saposnik G
    . The art and science of stroke outcome prognostication. Stroke 2020;51:1358–60 pmid:32208841
    CrossRefPubMed
  30. 30.↵
    1. Edlow BL,
    2. Giacino JT,
    3. Hirschberg RE, et al
    . Unexpected recovery of function after severe traumatic brain injury: the limits of early neuroimaging-based outcome prediction. Neurocrit Care 2013;19:364–75 doi:10.1007/s12028-013-9870-x pmid:23860665
    CrossRefPubMed
  31. 31.↵
    1. Cramer H,
    2. Holstein K,
    3. Vaughan J, et al
    . Challenges of incorporating algorithmic fairness into industry practice. ACM FAT* 2019 Translation Tutorial. February 22, 2019 https://www.youtube.com/watch?v=UicKZv93SOY, Accessed July 24, 2022
  32. 32.↵
    1. Barocas S,
    2. Hardt M
    . Fairness in machine learning. Tutorial. NIPS 2017. Long Beach, CA. December 4–9, 2017
  33. 33.↵
    1. Schwarz CG,
    2. Kremers WK,
    3. Therneau TM, et al
    . Identification of anonymous MRI research participants with face-recognition software. N Engl J Med 2019;381:1684–86 doi:10.1056/NEJMc1908881 pmid:31644852
    CrossRefPubMed
  34. 34.↵
    1. Athinoula A
    . Martinos Center for Biomedical Imaging: Martinos Center Anthropomorphic Phantoms. https://phantoms.martinos.org/Main_Page. Accessed May 21, 2023
  35. 35.↵
    1. Schwarz CG,
    2. Kremers WK,
    3. Lowe VJ, et al
    ; Alzheimer's Disease Neuroimaging Initiative. Face recognition from research brain PET: an unexpected PET problem. Neuroimage 2022;258:119357 doi:10.1016/j.neuroimage.2022.119357 pmid:35660089
    CrossRefPubMed
  36. 36.↵
    1. Jeong YU,
    2. Yoo S,
    3. Kim YH, et al
    . De-identification of facial features in magnetic resonance images: software development using deep learning technology. J Med Internet Res 2020;22:e22739 doi:10.2196/22739 pmid:33208302
    CrossRefPubMed
  37. 37.↵
    1. Arora A,
    2. Arora A
    . Synthetic patient data in health care: a widening legal loophole. Lancet 2022;399:1601–02 doi:10.1016/S0140-6736(22)00232-X pmid:35358423
    CrossRefPubMed
  38. 38.↵
    1. Goodfellow I,
    2. Pouget-Abadie J,
    3. Mirza M, et al
    . Generative adversarial nets; NIPS'14: In: Proceedings of the 27th International Conference on Neural Information Processing, Montreal, Quebec, Canada. December 8–13, 2014
  39. 39.↵
    1. Ross C,
    2. Swetlitz I
    . IBM's Watson supercomputer recommended ‘unsafe and incorrect’ cancer treatments, internal documents show. STAT+. July 25, 2018 https://www.statnews.com/wp-content/uploads/2018/09/IBMs-Watson-recommended-unsafe-and-incorrect-cancer-treatments-STAT.pdf. Accessed July 19, 2022
  40. 40.↵
    1. Onder O,
    2. Yarasir Y,
    3. Azizova A, et al
    . Errors, discrepancies and underlying bias in radiology with case examples: a pictorial review. Insights Imaging 2021;12:51 doi:10.1186/s13244-021-00986-8 pmid:33877458
    CrossRefPubMed
  41. 41.↵
    1. Choi K,
    2. Grover A,
    3. Singh T, et al
    . In: Proceedings of the International Conference on Machine Learning, Virtual. July 12–18, 2020;1887–98
  42. 42.↵
    1. Obermeyer Z,
    2. Powers B,
    3. Vogeli C, et al
    . Dissecting racial bias in an algorithm used to manage the health of populations. Science 2019;366:447–53 doi:10.1126/science.aax2342 pmid:31649194
    Abstract/FREE Full Text
  43. 43.↵
    1. Agarwal A,
    2. Beygelzimer A,
    3. Dudík M, et al
    . A reductions approach to fair classification. In: Proccedings of the International Conference on Machine Learning, Stockholm, Sweden. July 10–15, 2018;60–69
  44. 44.↵
    Fairlearn. Improve fairness of AI systems. https://fairlearn.org/. Accessed July 24, 2022
  45. 45.↵
    IBM Research. AI Fairness 360. https://ibm.com/opensource/open/projects/ai-fairness-360. Accessed July 24, 2022
  46. 46.↵
    Google. The ML Fairness Gym. https://github.com/google/ml-fairness-gym. Accessed July 24, 2022
  47. 47.↵
    What-If Tool. https://pair-code.github.io/what-if-tool/. Accessed July 24, 2022
  48. 48.↵
    1. Marina M,
    2. Tong Z
    1. Koh PW,
    2. Sagawa S,
    3. Marklund H, et al
    . WILDS: a benchmark of in-the-wild distribution shifts. In: Marina M, Tong Z, eds. In: Proceedings of the 38th International Conference on Machine Learning Virtual. July 18-21, 2021:5637–64
  49. 49.↵
    1. Yan W,
    2. Wang Y,
    3. Xia M, et al
    . Edge-guided output adaptor: highly efficient adaptation module for cross-vendor medical image segmentation. IEEE Signal Process Lett 2019;26:1593–97 doi:10.1109/LSP.2019.2940926
    CrossRef
  50. 50.↵
    1. Schumann C,
    2. Wang X,
    3. Beutel A, et al
    . Transfer of machine learning fairness across domains. arXiv 2019 arXiv:190609688
  51. 51.↵
    1. Joshi N,
    2. Burlina P
    . AI fairness via domain adaptation. arXiv 2021 arXiv:2104.01109
  52. 52.↵
    1. Floridi L,
    2. Cowls J
    . A united framework of five principles for AI in society. Harvard Data Science Review 2019;1 doi:10.1162/99608f92.8cd550d1
    CrossRef
  53. 53.↵
    1. Sheller MJ,
    2. Edwards B,
    3. Reina GA, et al
    . Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data. Sci Rep 2020;10:12598 doi:10.1038/s41598-020-69250-1 pmid:32724046
    CrossRefPubMed
  54. 54.↵
    1. Li T,
    2. Sahu AK,
    3. Talwalkar A, et al
    . Federated learning: challenges, methods, and future directions. IEEE Signal Processing Magazine 2020;37:50–60 doi:10.1109/MSP.2020.2975749
    CrossRef
  55. 55.↵
    1. Wang L,
    2. Xu S,
    3. Wang X, et al
    . Eavesdrop the composition proportion of training labels in federated learning. arXiv 2019 arXiv:1910.06044
  56. 56.↵
    1. Pejó B,
    2. Biczók G
    . Quality inference in federated learning with secure aggregation. arXiv 2020 arXiv:2007.06236
  57. 57.↵
    1. Abay A,
    2. Zhou Y,
    3. Baracaldo N, et al
    . Mitigating bias in federated learning. arXiv 2020 arXiv:2012.02447
  58. 58.↵
    1. Gu X,
    2. Tianqing Z,
    3. Li J, et al
    . Privacy, accuracy, and model fairness trade-offs in federated learning. Computers & Security 2022;122:102907 doi:10.1016/j.cose.2022.102907
    CrossRef
  59. 59.↵
    1. Mittelstadt BD,
    2. Floridi L
    . The ethics of big data: current and foreseeable issues in biomedical contexts. Sci Eng Ethics 2016;22:303–41 doi:10.1007/s11948-015-9652-2 pmid:26002496
    CrossRefPubMed
  60. 60.↵
    1. Larson DB,
    2. Magnus DC,
    3. Lungren MP, et al
    . Ethics of using and sharing clinical imaging data for artificial intelligence: a proposed framework. Radiology 2020;295:675–82 doi:10.1148/radiol.2020192536 pmid:32208097
    CrossRefPubMed
  61. 61.↵
    1. Varkey B
    . Principles of clinical ethics and their application to practice. Med Princ Pract 2021;30:17–28 doi:10.1159/000509119 pmid:32498071
    CrossRefPubMed
  62. 62.↵
    1. Mongan J,
    2. Kohli M
    . Artificial intelligence and human life: five lessons for radiology from the 737 MAX Disasters. Radiol Artif Intell 2020;2:e190111 doi:10.1148/ryai.2020190111 pmid:33937819
    CrossRefPubMed
  63. 63.↵
    1. Floridi L,
    2. Taddeo M
    . What is data ethics? Philos Trans A Math Phys Eng Sci 2016;374:20160360 doi:10.1098/rsta.2016.0360
    CrossRefPubMed
  64. 64.↵
    1. Floridi L,
    2. Cowls J,
    3. Beltrametti M, et al
    . AI4People: an ethical framework for a good AI society—opportunities, risks, principles, and recommendations. Minds Mach (Dordr) 2018;28:689–707 doi:10.1007/s11023-018-9482-5 pmid:30930541
    CrossRefPubMed
  65. 65.↵
    1. Gilpin LH,
    2. Bau D,
    3. Yuan BZ, et al
    . Explaining explanations: an overview of interpretability of machine learning. In: Proceedings of the 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAS), Turin, Italy. October 1–3, 2018;80–89 doi:10.1109/DSAA.2018.00018
    CrossRef
  66. 66.↵
    1. Haibe-Kains B,
    2. Adam GA,
    3. Hosny A, et al
    ; Massive Analysis Quality Control (MAQC) Society Board of Directors. Transparency and reproducibility in artificial intelligence. Nature 2020;586:E14–16 doi:10.1038/s41586-020-2766-y pmid:33057217
    CrossRefPubMed
  67. 67.↵
    1. Bramer M,
    2. Petridis M
    1. Kingston JKC
    . Artificial intelligence and legal liability. In: Bramer M, Petridis M, eds. Research and Development in Intelligent Systems XXXIII. Springer-Verlag International Publishing 2016:269–79
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 44 (11)
American Journal of Neuroradiology
Vol. 44, Issue 11
1 Nov 2023
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Ethical Considerations and Fairness in the Use of Artificial Intelligence for Neuroradiology
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
C.G. Filippi, J.M. Stein, Z. Wang, S. Bakas, Y. Liu, P.D. Chang, Y. Lui, C. Hess, D.P. Barboriak, A.E. Flanders, M. Wintermark, G. Zaharchuk, O. Wu
Ethical Considerations and Fairness in the Use of Artificial Intelligence for Neuroradiology
American Journal of Neuroradiology Nov 2023, 44 (11) 1242-1248; DOI: 10.3174/ajnr.A7963

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Ethical AI Use in Neuroradiology
C.G. Filippi, J.M. Stein, Z. Wang, S. Bakas, Y. Liu, P.D. Chang, Y. Lui, C. Hess, D.P. Barboriak, A.E. Flanders, M. Wintermark, G. Zaharchuk, O. Wu
American Journal of Neuroradiology Nov 2023, 44 (11) 1242-1248; DOI: 10.3174/ajnr.A7963
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • SUMMARY:
    • ABBREVIATION:
    • ACKNOWLEDGMENTS
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • Understanding Bias in Artificial Intelligence: A Practice Perspective
  • Crossref (10)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Gross failure rates and failure modes for a commercial AI‐based auto‐segmentation algorithm in head and neck cancer patients
    Simon W. P. Temple, Carl G. Rowbottom
    Journal of Applied Clinical Medical Physics 2024 25 6
  • Integrating Generative AI in Education to Achieve Sustainable Development Goals
    Puneet Kumar, Sangeet Vashishtha, Pooja Sharma, Ekansh Agarwal
    2024
  • Transforming Physiology and Healthcare through Foundation Models
    Ryan C. Godwin, Avery Tung, Dan E. Berkowitz, Ryan L. Melvin
    Physiology 2025 40 3
  • Understanding Bias in Artificial Intelligence: A Practice Perspective
    Melissa A. Davis, Ona Wu, Ichiro Ikuta, John E. Jordan, Michele H. Johnson, Edward Quigley
    American Journal of Neuroradiology 2024 45 4
  • AI-Powered Early Detection and Prognostic Modeling of Restrictive Cardiomyopathy Using Multimodal Non-Invasive Data
    Md Juniadul Islam, Syeda Aynul Karim, Taslimur Rahman
    Malaysian Journal of Science and Advanced Technology 2025
  • Algorithmic Bias as a Core Legal Dilemma in the Age of Artificial Intelligence: Conceptual Basis and the Current State of Regulation
    Gergely Ferenc Lendvai, Gergely Gosztonyi
    Laws 2025 14 3
  • Artificial Intelligence and Dentomaxillofacial Radiology Education: Innovations and Perspectives
    Daniel Negrete, Sérgio Lúcio Pereira de Castro Lopes, Matheus Dantas de Araújo Barretto, Nicole Berton de Moura, Ana Carla Raphaelli Nahás, Andre Luiz Ferreira Costa
    Dentistry Journal 2025 13 6
  • Integrating AI and neuroradiology
    Shivani Chopra, Talha Bin Emran
    International Journal of Surgery Open 2024 62 6
  • Integrating brain-inspired computation with big-data analytics for advanced diagnostics in neuroradiology
    Senthil Kumar, J. Ramprasath, V. Kalpana, Manikandan Rajagopal, Maheswaran S, Rupesh Gupta
    Neuroscience Informatics 2025 5 2
  • The relationship between ethics and innovation: specifically regarding the application and ethical considerations of artificial intelligence in animal models
    Hong Yin, Qiannan Li, Shuling Yang, Chunhuan Zhang, Yueyi Zhai, Haowei Hou, Yan Qu
    Holistic Integrative Oncology 2024 3 1

More in this TOC Section

  • Improving Hematoma Expansion Prediction Robustness
  • AI-Enhanced Photon-Counting CT of Temporal Bone
  • DIRDL for Inflammatory Myelopathies
Show more ARTIFICIAL INTELLIGENCE

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire