Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates


Improved Turnaround Times | Median time to first decision: 12 days

Review ArticlePediatric Neuroimaging
Open Access

The Mammillary Bodies: A Review of Causes of Injury in Infants and Children

K.M.E. Meys, L.S. de Vries, F. Groenendaal, S.D. Vann and M.H. Lequin
American Journal of Neuroradiology June 2022, 43 (6) 802-812; DOI: https://doi.org/10.3174/ajnr.A7463
K.M.E. Meys
aFrom the Department of Radiology (K.M.E.M., F.G., M.H.L.), Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for K.M.E. Meys
L.S. de Vries
bDepartment of Neonatology (L.S.D.V.), Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for L.S. de Vries
F. Groenendaal
aFrom the Department of Radiology (K.M.E.M., F.G., M.H.L.), Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for F. Groenendaal
S.D. Vann
cSchool of Psychology (S.D.V.), Cardiff University, Cardiff, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S.D. Vann
M.H. Lequin
aFrom the Department of Radiology (K.M.E.M., F.G., M.H.L.), Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M.H. Lequin
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Tsivilis D,
    2. Vann SD,
    3. Denby C, et al
    . A disproportionate role for the fornix and mammillary bodies in recall versus recognition memory. Nat Neurosci 2008;11:834–42 doi:10.1038/nn.2149 pmid:18552840
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. Vann SD
    . Re-evaluating the role of the mammillary bodies in memory. Neuropsychologia 2010;48:2316–27 doi:10.1016/j.neuropsychologia.2009.10.019 pmid:19879886
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Male S,
    2. Zand R
    . Isolated mammillary body infarct causing global amnesia: a case report. J Stroke Cerebrovasc Dis 2017;26:e50–52 doi:10.1016/j.jstrokecerebrovasdis.2016.11.115 pmid:28007327
    CrossRefPubMed
  4. 4.↵
    1. Tanaka Y,
    2. Miyazawa Y,
    3. Akaoka F, et al
    . Amnesia following damage to the mammillary bodies. Neurology 1997;48:160–65 doi:10.1212/wnl.48.1.160 pmid:9008512
    Abstract/FREE Full Text
  5. 5.↵
    1. Vann SD,
    2. Tsivilis D,
    3. Denby CE, et al
    . Impaired recollection but spared familiarity in patients with extended hippocampal system damage revealed by 3 convergent methods. Proc Natl Acad Sci U S A 2009;106:5442–47 doi:10.1073/pnas.0812097106 pmid:19289844
    Abstract/FREE Full Text
  6. 6.↵
    1. Denby CE,
    2. Vann SD,
    3. Tsivilis D, et al
    . The frequency and extent of mammillary body atrophy associated with surgical removal of a colloid cyst. AJNR Am J Neuroradiol 2009;30:736–43 doi:10.3174/ajnr.A1424 pmid:19164441
    Abstract/FREE Full Text
  7. 7.↵
    1. Bernstein HG,
    2. Krause S,
    3. Krell D, et al
    . Strongly reduced number of parvalbumin-immunoreactive projection neurons in the mammillary bodies in schizophrenia: further evidence for limbic neuropathology. Ann N Y Acad Sci 2007;1096:120–27 doi:10.1196/annals.1397.077 pmid:17405923
    CrossRefPubMedWeb of Science
  8. 8.↵
    1. Baloyannis SJ,
    2. Mavroudis I,
    3. Baloyannis IS, et al
    . Mammillary bodies in Alzheimer's disease: a Golgi and electron microscope study. Am J Alzheimers Dis Other Demen 2016;31:247–56 doi:10.1177/1533317515602548 pmid:26399484
    CrossRefPubMed
  9. 9.↵
    1. Dineen RA,
    2. Bradshaw CM,
    3. Constantinescu CS, et al
    . Extra-hippocampal subcortical limbic involvement predicts episodic recall performance in multiple sclerosis. PLoS One 2012;7:e44942 doi:10.1371/journal.pone.0044942 pmid:23056187
    CrossRefPubMed
  10. 10.↵
    1. Johkura K,
    2. Naito M
    . Wernicke's encephalopathy-like lesions in global cerebral hypoxia. J Clin Neurosci 2008;15:318–19 doi:10.1016/j.jocn.2006.10.022 pmid:18178437
    CrossRefPubMed
  11. 11.↵
    1. Schmidtke K
    . Wernicke-Korsakoff syndrome following attempted hanging. Rev Neurol (Paris) 1993;149:213–16 pmid:8235215
    PubMed
  12. 12.↵
    1. Molavi M,
    2. Vann SD,
    3. de Vries LS, et al
    . Signal change in the mammillary bodies after perinatal asphyxia. AJNR Am J Neuroradiol 2019;40:1829–34 doi:10.3174/ajnr.A6232 pmid:31694818
    Abstract/FREE Full Text
  13. 13.↵
    1. Lequin MH,
    2. Steggerda SJ,
    3. Severino M, et al
    . Mammillary body injury in neonatal encephalopathy: a multicentre, retrospective study. Pediatr Res 2021 Mar 2. [Epub ahead of print] doi:10.1038/s41390-021-01436-3 pmid:33654286
    CrossRefPubMed
  14. 14.↵
    1. Annink KV,
    2. de Vries LS,
    3. Groenendaal F, et al
    . Mammillary body atrophy and other MRI correlates of school-age outcome following neonatal hypoxic-ischemic encephalopathy. Sci Rep 2021;11:5017 doi:10.1038/s41598-021-83982-8 pmid:33658541
    CrossRefPubMed
  15. 15.↵
    1. Cabrera-Mino C,
    2. Roy B,
    3. Woo MA, et al
    . Reduced brain mammillary body volumes and memory deficits in adolescents who have undergone the Fontan procedure. Pediatr Res 2020;87:169–75 doi:10.1038/s41390-019-0569-3 pmid:31499515
    CrossRefPubMed
  16. 16.↵
    1. Koutcherov Y,
    2. Mai JK,
    3. Paxinos G
    . Hypothalamus of the human fetus. J Chem Neuroanat 2003;26:253–70 doi:10.1016/j.jchemneu.2003.07.002 pmid:14729128
    CrossRefPubMedWeb of Science
  17. 17.↵
    1. Tagliamonte M,
    2. Sestieri C,
    3. Romani GL, et al
    . MRI anatomical variants of mammillary bodies. Brain Struct Funct 2015;220:85–90 doi:10.1007/s00429-013-0639-y pmid:24072163
    CrossRefPubMed
  18. 18.↵
    1. Ozturk A,
    2. Yousem DM,
    3. Mahmood A, et al
    . Prevalence of asymmetry of mamillary body and fornix size on MR imaging. AJNR Am J Neuroradiol 2008;29:384–87 doi:10.3174/ajnr.A0801 pmid:17989375
    CrossRefPubMed
  19. 19.↵
    1. Bachevalier J,
    2. Meunier M
    . Cerebral ischemia: are the memory deficits associated with hippocampal cell loss? Hippocampus 1996;6:553–60 doi:10.1002/(SICI)1098-1063(1996)6:5<553::AID-HIPO8>3.0.CO;2-J pmid:8953308
    CrossRefPubMedWeb of Science
  20. 20.↵
    1. Loftus M,
    2. Knight RT,
    3. Amaral DG
    . An analysis of atrophy in the medial mammillary nucleus following hippocampal and fornix lesions in humans and nonhuman primates. Exp Neurol 2000;163:180–90 doi:10.1006/exnr.2000.7361 pmid:10785457
    CrossRefPubMed
  21. 21.↵
    1. Vann SD
    . Dismantling the Papez circuit for memory in rats. Elife 2013;2:e00736 doi:10.7554/eLife.00736 pmid:23805381
    CrossRefPubMed
  22. 22.↵
    1. Dillingham CM,
    2. Milczarek MM,
    3. Perry JC, et al
    . Mammillothalamic disconnection alters hippocampocortical oscillatory activity and microstructure: implications for diencephalic amnesia. J Neurosci 2019;39:6696–6713 doi:10.1523/JNEUROSCI.0827-19.2019 pmid:31235646
    Abstract/FREE Full Text
  23. 23.↵
    1. Vann SD,
    2. Aggleton JP
    . The mammillary bodies: two memory systems in one? Nat Rev Neurosci 2004;5:35–44 doi:10.1038/nrn1299 pmid:14708002
    CrossRefPubMedWeb of Science
  24. 24.↵
    1. Dillingham CM,
    2. Milczarek MM,
    3. Perry JC, et al
    . Time to put the mammillothalamic pathway into context. Neurosci Biobehav Rev 2021;121:60–74 doi:10.1016/j.neubiorev.2020.11.031 pmid:33309908
    CrossRefPubMed
  25. 25.↵
    1. Zuccoli G,
    2. Siddiqui N,
    3. Bailey A, et al
    . Neuroimaging findings in pediatric Wernicke encephalopathy: a review. Neuroradiology 2010;52:523–29 doi:10.1007/s00234-009-0604-x pmid:19844698
    CrossRefPubMedWeb of Science
  26. 26.↵
    1. Lallas M,
    2. Desai J
    . Wernicke encephalopathy in children and adolescents. World J Pediatr 2014;10:293–98 doi:10.1007/s12519-014-0506-9 pmid:25515801
    CrossRefPubMed
  27. 27.↵
    1. Thomson AD
    . Mechanisms of vitamin deficiency in chronic alcohol misusers and the development of the Wernicke-Korsakoff syndrome. Alcohol Alcohol Suppl 2000;35:2–7 doi:10.1093/alcalc/35.supplement_1.2 pmid:11304071
    CrossRefPubMed
  28. 28.↵
    1. Harper CG,
    2. Giles M,
    3. Finlay-Jones R
    . Clinical signs in the Wernicke-Korsakoff complex: a retrospective analysis of 131 cases diagnosed at necropsy. J Neurol Neurosurg Psychiatry 1986;49:341–45 doi:10.1136/jnnp.49.4.341 pmid:3701343
    Abstract/FREE Full Text
  29. 29.↵
    1. Vasconcelos MM,
    2. Silva KP,
    3. Vidal G, et al
    . Early diagnosis of pediatric Wernicke's encephalopathy. Pediatr Neurol 1999;20:289–94 doi:10.1016/S0887-8994(98)00153-2 pmid:10328278
    CrossRefPubMedWeb of Science
  30. 30.↵
    1. Khalsa SS,
    2. Kumar R,
    3. Patel V, et al
    . Mammillary body volume abnormalities in anorexia nervosa. Int J Eat Disord 2016;49:920–29 doi:10.1002/eat.22573 pmid:27414055
    CrossRefPubMed
  31. 31.↵
    1. Lamdhade S,
    2. Almulla A,
    3. Alroughani R
    . Recurrent Wernicke's encephalopathy in a 16-year-old girl with atypical clinical and radiological features. J Neurol Sci 2013;333:e627 doi:10.1155/2014/582482 pmid:24790762
    CrossRefPubMed
  32. 32.↵
    1. Oka M,
    2. Terae S,
    3. Kobayashi R, et al
    . Diffusion-weighted MR findings in a reversible case of acute Wernicke encephalopathy. Acta Neurol Scand 2001;104:178–81 doi:10.1034/j.1600-0404.2001.00098.x pmid:11551240
    CrossRefPubMed
  33. 33.↵
    1. Sparacia G,
    2. Banco A,
    3. Lagalla R
    . Reversible MRI abnormalities in an unusual paediatric presentation of Wernicke's encephalopathy. Pediatr Radiol 1999;29:581–84 doi:10.1007/s002470050652 pmid:10415181
    CrossRefPubMedWeb of Science
  34. 34.↵
    1. Samanta D
    . Dry beriberi preceded Wernicke encephalopathy: thiamine deficiency after laparoscopic sleeve gastrectomy. J Pediatr Neurosci 2015;10:297–99 doi:10.4103/1817-1745.165732 pmid:26557183
    CrossRefPubMed
  35. 35.↵
    1. Srivastava A,
    2. Yadav SK,
    3. Borkar VV, et al
    . Serial evaluation of children with ALF with advanced MRI, serum proinflammatory cytokines, thiamine, and cognition assessment. J Pediatr Gastroenterol Nutr 2012;55:580–86 doi:10.1097/MPG.0b013e31825f4c3e pmid:22614112
    CrossRefPubMed
  36. 36.↵
    1. Arana-Guajardo AC,
    2. Cámara-Lemarroy CR,
    3. Rendón-Ramírez EJ, et al
    . Wernicke encephalopathy presenting in a patient with severe acute pancreatitis. JOP 2012;13:104–107 pmid:22233960
    PubMed
  37. 37.↵
    1. Zuccoli G,
    2. Pipitone N
    . Neuroimaging findings in acute Wernicke's encephalopathy: review of the literature. AJR Am J Roentgenol 2009;192:501–08 doi:10.2214/AJR.07.3959 pmid:19155417
    CrossRefPubMed
  38. 38.↵
    1. Fei GQ,
    2. Zhong C,
    3. Jin L, et al
    . Clinical characteristics and MR imaging features of nonalcoholic Wernicke encephalopathy. AJNR Am J Neuroradiol 2008;29:164–69 doi:10.3174/ajnr.A0827 pmid:18192344
    CrossRefPubMedWeb of Science
  39. 39.↵
    1. Zuccoli G,
    2. Gallucci M,
    3. Capellades J, et al
    . Wernicke encephalopathy: MR findings at clinical presentation in twenty-six alcoholic and nonalcoholic patients. AJNR Am J Neuroradiol 2007;28:1328–31 doi:10.3174/ajnr.A0544 pmid:17698536
    CrossRefPubMedWeb of Science
  40. 40.↵
    1. Zuccoli G,
    2. Santa Cruz D,
    3. Bertolini M, et al
    . MR imaging findings in 56 patients with Wernicke encephalopathy: nonalcoholics may differ from alcoholics. AJNR Am J Neuroradiol 2009;30:171–76 doi:10.3174/ajnr.A1280 pmid:18945789
    Abstract/FREE Full Text
  41. 41.↵
    1. Gliebus G,
    2. Faerber EN,
    3. Valencia I, et al
    . Ataxia, ophthalmoplegia, and impairment of consciousness in a 19-month-old American boy. Semin Pediatr Neurol 2014;21:139–43 doi:10.1016/j.spen.2014.04.015 pmid:25149949
    CrossRefPubMed
  42. 42.↵
    1. Kurinczuk JJ,
    2. White-Koning M,
    3. Badawi N
    . Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy. Early Hum Dev 2010;86:329–38 doi:10.1016/j.earlhumdev.2010.05.010 pmid:20554402
    CrossRefPubMedWeb of Science
  43. 43.↵
    1. de Vries LS,
    2. Groenendaal F
    . Patterns of neonatal hypoxic-ischaemic brain injury. Neuroradiology 2010;52:555–66 doi:10.1007/s00234-010-0674-9 pmid:20390260
    CrossRefPubMedWeb of Science
  44. 44.↵
    1. Alderliesten T,
    2. Nikkels PG,
    3. Benders MJ, et al
    . Antemortem cranial MRI compared with postmortem histopathologic examination of the brain in term infants with neonatal encephalopathy following perinatal asphyxia. Arch Dis Child Fetal Neonatal Ed 2013;98:F304–09 doi:10.1136/archdischild-2012-301768 pmid:23172767
    Abstract/FREE Full Text
  45. 45.↵
    1. Kasdorf E,
    2. Engel M,
    3. Heier L, et al
    . Therapeutic hypothermia in neonates and selective hippocampal injury on diffusion-weighted magnetic resonance imaging. Pediatr Neurol 2014;51:104–08 doi:10.1016/j.pediatrneurol.2014.03.002 pmid:24810874
    CrossRefPubMed
  46. 46.↵
    1. Dzieciol AM,
    2. Bachevalier J,
    3. Saleem KS, et al
    . Hippocampal and diencephalic pathology in developmental amnesia. Cortex 2017;86:33–44 doi:10.1016/j.cortex.2016.09.016 pmid:27880886
    CrossRefPubMed
  47. 47.↵
    1. Cooper JM,
    2. Gadian DG,
    3. Jentschke S, et al
    . Neonatal hypoxia, hippocampal atrophy, and memory impairment: evidence of a causal sequence. Cereb Cortex 2015;25:1469–76 doi:10.1093/cercor/bht332 pmid:24343890
    CrossRefPubMed
  48. 48.↵
    1. Geva S,
    2. Jentschke S,
    3. Argyropoulos GP, et al
    . Volume reduction of caudate nucleus is associated with movement coordination deficits in patients with hippocampal atrophy due to perinatal hypoxia-ischaemia. Neuroimage Clin 2020;28:102429 doi:10.1016/j.nicl.2020.102429 pmid:33010533
    CrossRefPubMed
  49. 49.↵
    1. Fleming PJ,
    2. Cade D,
    3. Bryan MH, et al
    . Congenital central hypoventilation and sleep state. Pediatrics 1980;66:425–28 doi:10.1542/peds.66.3.425 pmid:6775277
    CrossRefPubMedWeb of Science
  50. 50.↵
    1. O'Brien LM,
    2. Holbrook CR,
    3. Vanderlaan M, et al
    . Autonomic function in children with congenital central hypoventilation syndrome and their families. Chest 2005;128:2478–84 doi:10.1378/chest.128.4.2478 pmid:16236912
    CrossRefPubMedWeb of Science
  51. 51.↵
    1. Ruof H,
    2. Hammer J,
    3. Tillmann B, et al
    . Neuropsychological, behavioral, and adaptive functioning of Swiss children with congenital central hypoventilation syndrome. J Child Neurol 2008;23:1254–59 doi:10.1177/0883073808318048 pmid:18984833
    CrossRefPubMedWeb of Science
  52. 52.↵
    1. Vanderlaan M,
    2. Holbrook CR,
    3. Wang M, et al
    . Epidemiologic survey of 196 patients with congenital central hypoventilation syndrome. Pediatr Pulmonol 2004;37:217–29 doi:10.1002/ppul.10438 pmid:14966815
    CrossRefPubMedWeb of Science
  53. 53.↵
    1. Macey PM,
    2. Woo MA,
    3. Macey KE, et al
    . Hypoxia reveals posterior thalamic, cerebellar, midbrain, and limbic deficits in congenital central hypoventilation syndrome. J Appl Physiol (1985) 2005;98:958–69 doi:10.1152/japplphysiol.00969.2004 pmid:15531561
    CrossRefPubMedWeb of Science
  54. 54.↵
    1. Woo MA,
    2. Macey PM,
    3. Macey KE, et al
    . FMRI responses to hyperoxia in congenital central hypoventilation syndrome. Pediatr Res 2005;57:510–18 doi:10.1203/01.PDR.0000155763.93819.46 pmid:15718370
    CrossRefPubMedWeb of Science
  55. 55.↵
    1. Kumar R,
    2. Macey PM,
    3. Woo MA, et al
    . Elevated mean diffusivity in widespread brain regions in congenital central hypoventilation syndrome. J Magn Reson Imaging 2006;24:1252–58 doi:10.1002/jmri.20759 pmid:17075838
    CrossRefPubMed
  56. 56.↵
    1. Kumar R,
    2. Lee K,
    3. MacEy PM, et al
    . Mammillary body and fornix injury in congenital central hypoventilation syndrome. Pediatr Res 2009;66:429–34 doi:10.1203/PDR.0b013e3181b3b363 pmid:19581831
    CrossRefPubMedWeb of Science
  57. 57.↵
    1. Fatouleh RH,
    2. Hammam E,
    3. Lundblad LC, et al
    . Functional and structural changes in the brain associated with the increase in muscle sympathetic nerve activity in obstructive sleep apnoea. Neuroimage Clin 2014;6:275–83 doi:10.1016/j.nicl.2014.08.021 pmid:25379440
    CrossRefPubMed
  58. 58.↵
    1. Kumar R,
    2. Woo MA,
    3. Birrer BV, et al
    . Mammillary bodies and fornix fibers are injured in heart failure. Neurobiol Dis 2009;33:236–42 doi:10.1016/j.nbd.2008.10.004 pmid:19022386
    CrossRefPubMedWeb of Science
  59. 59.↵
    1. Khairy P,
    2. Fernandes SM,
    3. Mayer JE Jr., et al
    . Long-term survival, modes of death, and predictors of mortality in patients with Fontan surgery. Circulation 2008;117:85–92 doi:10.1161/CIRCULATIONAHA.107.738559 pmid:18071068
    Abstract/FREE Full Text
  60. 60.↵
    1. Marelli A,
    2. Miller SP,
    3. Marino BS, et al
    . Brain in congenital heart disease across the lifespan: the cumulative burden of injury. Circulation 2016;133:1951–62 doi:10.1161/CIRCULATIONAHA.115.019881 pmid:27185022
    Abstract/FREE Full Text
  61. 61.↵
    1. Gaynor JW,
    2. Stopp C,
    3. Wypij D, et al
    ; International Cardiac Collaborative on Neurodevelopment (ICCON) Investigators. Neurodevelopmental outcomes after cardiac surgery in infancy. Pediatrics 2015;135:816–25 doi:10.1542/peds.2014-3825 pmid:25917996
    CrossRefPubMed
  62. 62.↵
    1. Bellinger DC,
    2. Watson CG,
    3. Rivkin MJ, et al
    . Neuropsychological status and structural brain imaging in adolescents with single ventricle who underwent the Fontan procedure. J Am Heart Assoc 2015;4:e002302 doi:10.1161/JAHA.115.002302 pmid:26667085
    Abstract/FREE Full Text
  63. 63.↵
    1. Sethi V,
    2. Tabbutt S,
    3. Dimitropoulos A, et al
    . Single-ventricle anatomy predicts delayed microstructural brain development. Pediatr Res 2013;73:661–67 doi:10.1038/pr.2013.29 pmid:23407116
    CrossRefPubMed
  64. 64.↵
    1. Singh S,
    2. Roy B,
    3. Pike N, et al
    . Altered brain diffusion tensor imaging indices in adolescents with the Fontan palliation. Neuroradiology 2019;61:811–24 doi:10.1007/s00234-019-02208-x pmid:31041457
    CrossRefPubMed
  65. 65.↵
    1. Friederich MW,
    2. Elias AF,
    3. Kuster A, et al
    . Pathogenic variants in SQOR encoding sulfide: quinone oxidoreductase are a potentially treatable cause of Leigh disease. J Inherit Metab Dis 2020;43:1024–36 doi:10.1002/jimd.12232 pmid:32160317
    CrossRefPubMed
  66. 66.↵
    1. Poloni CB,
    2. Ferey S,
    3. Haenggeli CA, et al
    . Alexander disease: early presence of cerebral MRI criteria. Eur J Paediatr Neurol 2009;13:556–58 doi:10.1016/j.ejpn.2008.11.008 pmid:19128991
    CrossRefPubMed
  67. 67.↵
    1. Inui K,
    2. Akagi M,
    3. Nishigaki T, et al
    . A case of chronic infantile type of fucosidosis: clinical and magnetic resonance image findings. Brain Dev 2000;22:47–49 doi:10.1016/S0387-7604(99)00082-0 pmid:10761834
    CrossRefPubMedWeb of Science
  68. 68.↵
    1. Shah S,
    2. Khan N,
    3. Lakshmanan R, et al
    . Biotinidase deficiency presenting as neuromyelitis optica spectrum disorder. Brain Dev 2020;42:762–66 doi:10.1016/j.braindev.2020.07.007 pmid:32741581
    CrossRefPubMed
  69. 69.↵
    1. Kodama F,
    2. Ogawa T,
    3. Sugihara S, et al
    . Transneuronal degeneration in patients with temporal lobe epilepsy: devaluation by MR imaging. Eur Radiol 2003;13:2180–85 doi:10.1007/s00330-003-1875-y pmid:12707796
    CrossRefPubMed
  70. 70.↵
    1. Oikawa H,
    2. Sasaki M,
    3. Tamakawa Y, et al
    . The circuit of Papez in mesial temporal sclerosis: MRI. Neuroradiology 2001;43:205–10 doi:10.1007/s002340000463 pmid:11305751
    CrossRefPubMedWeb of Science
  71. 71.↵
    1. Kim JH,
    2. Tien RD,
    3. Felsberg GJ, et al
    . Clinical significance of asymmetry of the fornix and mamillary body on MR in hippocampal sclerosis. AJNR Am J Neuroradiol 1995;16:509–15 pmid:7793375
    PubMedWeb of Science
  72. 72.↵
    1. Blumcke I,
    2. Thom M,
    3. Wiestler OD
    . Ammon's horn sclerosis: a maldevelopmental disorder associated with temporal lobe epilepsy. Brain Pathol 2002;12:199–11 pmid:11958375
    CrossRefPubMedWeb of Science
  73. 73.↵
    1. Grewal SS,
    2. Gupta V,
    3. Vibhute P, et al
    . Mammillary body changes and seizure outcome after laser interstitial thermal therapy of the mesial temporal lobe. Epilepsy Res 2018;141:19–22 doi:10.1016/j.eplepsyres.2018.01.021 pmid:29414383
    CrossRefPubMed
  74. 74.↵
    1. Urbach H,
    2. Siebenhaar G,
    3. Koenig R, et al
    . Limbic system abnormalities associated with Ammon's horn sclerosis do not alter seizure outcome after amygdalohippocampectomy. Epilepsia 2005;46:549–55 doi:10.1111/j.0013-9580.2005.29104.x pmid:15816949
    CrossRefPubMed
  75. 75.↵
    1. Mamourian AC,
    2. Brown DB
    . Asymmetric mamillary bodies: MR identification. AJNR Am J Neuroradiol 1993;14:1332–35; discussion 1336–42 pmid:8279328
    Abstract/FREE Full Text
  76. 76.↵
    1. van Rijckevorsel K,
    2. Abu Serieh B,
    3. de Tourtchaninoff M, et al
    . Deep EEG recordings of the mammillary body in epilepsy patients. Epilepsia 2005;46:781–85 doi:10.1111/j.1528-1167.2005.45704.x pmid:15857449
    CrossRefPubMed
  77. 77.↵
    1. Jha P,
    2. Agarwal KK,
    3. Sahoo MK, et al
    . Mammillary body: chronic refractory epilepsy seizure focus detected by 18F-FDG PET-CT. Clin Nucl Med 2016;41:419–20 doi:10.1097/RLU.0000000000001142 pmid:26859207
    CrossRefPubMed
  78. 78.↵
    1. Assis ZA,
    2. Sevick R
    . Association of transsynaptic degeneration of the Papez circuit with anterior thalamic encephalomalacia. JAMA Neurol 2018;75:1437–38 doi:10.1001/jamaneurol.2018.2262 pmid:30128549
    CrossRefPubMed
  79. 79.↵
    1. Freeman JL,
    2. Coleman LT,
    3. Wellard RM, et al
    . MR imaging and spectroscopic study of epileptogenic hypothalamic hamartomas: analysis of 72 cases. AJNR Am J Neuroradiol 2004;25:450–62 pmid:15037472
    PubMedWeb of Science
  80. 80.↵
    1. Tschampa HJ,
    2. Greschus S,
    3. Sassen R, et al
    . Thalamus lesions in chronic and acute seizure disorders. Neuroradiology 2011;53:245–54 doi:10.1007/s00234-010-0734-1 pmid:20585765
    CrossRefPubMed
  81. 81.↵
    1. Trinka E,
    2. Rauscher C,
    3. Nagler M, et al
    . A case of Ohtahara syndrome with olivary-dentate dysplasia and agenesis of mamillary bodies. Epilepsia 2001;42:950–53 doi:10.1046/j.1528-1157.2001.042007950.x pmid:11488899
    CrossRefPubMedWeb of Science
  82. 82.↵
    1. Wang JC,
    2. Heier L,
    3. Souweidane MM
    . Advances in the endoscopic management of suprasellar arachnoid cysts in children. J Neurosurg 2004;100:418–26 doi:10.3171/ped.2004.100.5.0418 pmid:15287448
    CrossRefPubMed
  83. 83.↵
    1. Maixner W
    . Hypothalamic hamartomas–clinical, neuropathological and surgical aspects. Childs Nerv Syst 2006;22:867–73 doi:10.1007/s00381-006-0129-0 pmid:16763856
    CrossRefPubMed
  84. 84.↵
    1. Ozek MM,
    2. Urgun K
    . Neuroendoscopic management of suprasellar arachnoid cysts. World Neurosurg 2013;79(2 Suppl): S19e1318 doi:10.1016/j.wneu.2012.02.011 pmid:22381821
    CrossRefPubMed
  85. 85.↵
    1. Perez FA,
    2. Elfers C,
    3. Yanovski JA, et al
    . MRI measures of hypothalamic injury are associated with glucagon-like peptide-1 receptor agonist treatment response in people with hypothalamic obesity. Diabetes Obes Metab 2021;23:1532–41 doi:10.1111/dom.14366 pmid:33651438
    CrossRefPubMed
  86. 86.↵
    1. Roth CL,
    2. Eslamy H,
    3. Pihoker C, et al
    . Semi-quantitative analysis of hypothalamic damage on MRI predicts risk for hypothalamic obesity. Obesity (Silver Spring). 2015;23:1226–33 doi:10.1002/oby.21067 pmid:25884561
    CrossRefPubMed
  87. 87.↵
    1. Roth J,
    2. Bercu MM,
    3. Constantini S
    . Combined open microsurgical and endoscopic resection of hypothalamic hamartomas. J Neurosurg Pediatr 2013;11:491–94 doi:10.3171/2013.2.PEDS12275 pmid:23521152
    CrossRefPubMed
  88. 88.↵
    1. Leal AJ,
    2. Moreira A,
    3. Robalo C, et al
    . Different electroclinical manifestations of the epilepsy associated with hamartomas connecting to the middle or posterior hypothalamus. Epilepsia 2003;44:1191–95 doi:10.1046/j.1528-1157.2003.66902.x pmid:12919391
    CrossRefPubMed
  89. 89.↵
    1. Garre ML,
    2. Cama A
    . Craniopharyngioma: modern concepts in pathogenesis and treatment. Curr Opin Pediatr 2007;19:471–79 doi:10.1097/MOP.0b013e3282495a22 pmid:17630614
    CrossRefPubMedWeb of Science
  90. 90.↵
    1. Roth C,
    2. Wilken B,
    3. Hanefeld F, et al
    . Hyperphagia in children with craniopharyngioma is associated with hyperleptinaemia and a failure in the downregulation of appetite. Eur J Endocrinol 1998;138:89–91 doi:10.1530/eje.0.1380089 pmid:9461323
    Abstract
  91. 91.↵
    1. Muller HL,
    2. Faldum A,
    3. Etavard-Gorris N, et al
    . Functional capacity, obesity and hypothalamic involvement: cross-sectional study on 212 patients with childhood craniopharyngioma. Klin Padiatr 2003;215:310–14 doi:10.1055/s-2003-45499 pmid:14677094
    CrossRefPubMedWeb of Science
  92. 92.↵
    1. Mortini P,
    2. Gagliardi F,
    3. Bailo M, et al
    . Magnetic resonance imaging as predictor of functional outcome in craniopharyngiomas. Endocrine 2016;51:148–62 doi:10.1007/s12020-015-0683-x pmid:26179178
    CrossRefPubMed
  93. 93.↵
    1. Müller HL,
    2. Gebhardt U,
    3. Teske C, et al
    ; Study Committee of KRANIOPHARYNGEOM 2000. Post-operative hypothalamic lesions and obesity in childhood craniopharyngioma: results of the multinational prospective trial KRANIOPHARYNGEOM 2000 after 3-year follow-up. Eur J Endocrinol 2011;165:17–24 doi:10.1530/EJE-11-0158 pmid:21490122
    Abstract/FREE Full Text
  94. 94.↵
    1. Ozyurt J,
    2. Thiel CM,
    3. Lorenzen A, et al
    . Neuropsychological outcome in patients with childhood craniopharyngioma and hypothalamic involvement. J Pediatr 2014;164:876–81 doi:10.1016/j.jpeds.2013.12.010 pmid:24507865
    CrossRefPubMedWeb of Science
  95. 95.↵
    1. Ciesielski KT,
    2. Lesnik PG,
    3. Benzel EC, et al
    . MRI morphometry of mamillary bodies, caudate nuclei, and prefrontal cortices after chemotherapy for childhood leukemia: multivariate models of early and late developing memory subsystems. Behav Neurosci 1999;113:439–50 doi:10.1037/0735-7044.113.3.439 pmid:10443772
    CrossRefPubMed
  96. 96.↵
    1. Larnaout A,
    2. Mongalgi MA,
    3. Kaabachi N, et al
    . Methylmalonic acidaemia with bilateral globus pallidus involvement: a neuropathological study. J Inherit Metab Dis 1998;21:639–44 doi:10.1023/A:1005428432730 pmid:9762599
    CrossRefPubMed
  97. 97.↵
    1. Vann SD,
    2. Nelson AJ
    . The mammillary bodies and memory: more than a hippocampal relay. Prog Brain Res 2015;219:163–85 doi:10.1016/bs.pbr.2015.03.006 pmid:26072239
    CrossRefPubMed
  98. 98.↵
    1. Martin PR,
    2. Singleton CK,
    3. Hiller-Sturmhöfel S
    . The role of thiamine deficiency in alcoholic brain disease. Alcohol Res Health 2003;27:134–42 pmid:15303623
    PubMedWeb of Science
  99. 99.↵
    1. Singleton CK,
    2. Martin PR
    . Molecular mechanisms of thiamine utilization. Curr Mol Med 2001;1:197–207 doi:10.2174/1566524013363870 pmid:11899071
    CrossRefPubMed
  100. 100.↵
    1. Schabelman E,
    2. Kuo D
    . Glucose before thiamine for Wernicke encephalopathy: a literature review. J Emerg Med 2012;42:488–94 doi:10.1016/j.jemermed.2011.05.076 pmid:22104258
    CrossRefPubMed
  101. 101.↵
    1. Northington FJ,
    2. Chavez-Valdez R,
    3. Martin LJ
    . Neuronal cell death in neonatal hypoxia-ischemia. Ann Neurol 2011;69:743–58 doi:10.1002/ana.22419 pmid:21520238
    CrossRefPubMed
  102. 102.↵
    1. Wang X,
    2. Ma J,
    3. Fu Q, et al
    . Role of hypoxia-inducible factor-1alpha in autophagic cell death in microglial cells induced by hypoxia. Mol Med Rep 2017;15:2097–2105 doi:10.3892/mmr.2017.6277 pmid:28259912
    CrossRefPubMed
  103. 103.↵
    1. Zera K,
    2. Zastre J
    . Stabilization of the hypoxia-inducible transcription factor-1 alpha (HIF-1alpha) in thiamine deficiency is mediated by pyruvate accumulation. Toxicol Appl Pharmacol 2018;355:180–88 doi:10.1016/j.taap.2018.07.004 pmid:30008376
    CrossRefPubMed
  104. 104.↵
    1. Haddad GG,
    2. Jiang C
    . O2 deprivation in the central nervous system: on mechanisms of neuronal response, differential sensitivity and injury. Prog Neurobiol 1993;40:277–318 doi:10.1016/0301-0082(93)90014-j pmid:7680137
    CrossRefPubMedWeb of Science
  105. 105.↵
    1. Ben-Zvi A,
    2. Liebner S
    . Developmental regulation of barrier- and non-barrier blood vessels in the CNS. J Intern Med 2021 Mar 4 [Epub ahead of print] doi:10.1111/joim.13263 pmid:33665890
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 43 (6)
American Journal of Neuroradiology
Vol. 43, Issue 6
1 Jun 2022
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The Mammillary Bodies: A Review of Causes of Injury in Infants and Children
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
K.M.E. Meys, L.S. de Vries, F. Groenendaal, S.D. Vann, M.H. Lequin
The Mammillary Bodies: A Review of Causes of Injury in Infants and Children
American Journal of Neuroradiology Jun 2022, 43 (6) 802-812; DOI: 10.3174/ajnr.A7463

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Mammillary Bodies: Injury Causes in Children
K.M.E. Meys, L.S. de Vries, F. Groenendaal, S.D. Vann, M.H. Lequin
American Journal of Neuroradiology Jun 2022, 43 (6) 802-812; DOI: 10.3174/ajnr.A7463
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • DISCUSSION
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • Diencephalic and white matter knock-on effects in hippocampal amnesia - why they matter
  • Influenza-associated encephalopathy mimicking dermatoneuro syndrome
  • Impairments in the early consolidation of spatial memories via group II mGluR agonism in the mammillary bodies
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Clinical SVR of Fetal Brain MRI
  • FRACTURE MR in Congenital Vertebral Anomalies
  • Comparing MRI Perfusion in Pediatric Brain Tumors
Show more Pediatric Neuroimaging

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire