Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Review ArticleNeurointervention
Open Access

A Review of Robotic Interventional Neuroradiology

C.B. Beaman, N. Kaneko, P.M. Meyers and S. Tateshima
American Journal of Neuroradiology May 2021, 42 (5) 808-814; DOI: https://doi.org/10.3174/ajnr.A6976
C.B. Beaman
aDepartment of Neurology (C.B.B.), Columbia University Irving Medical Center, New York, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C.B. Beaman
N. Kaneko
bDepartment of Radiological Sciences (N.K., S.T.), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for N. Kaneko
P.M. Meyers
cDepartment of Radiology and Neurological Surgery (P.M.M.), Columbia University Irving Medical Center, New York, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for P.M. Meyers
S. Tateshima
bDepartment of Radiological Sciences (N.K., S.T.), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S. Tateshima
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Moniz E
    . Arterial encephalography, its importance in the location of cerebral tumors. https://thejns.org/view/journals/j-neurosurg/21/2/article-p145.xml. Accessed August 1, 2020
  2. 2.↵
    1. Kwoh YS,
    2. Hou J,
    3. Jonckheere EA, et al
    . A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng 1988;35:153–60 doi:10.1109/10.1354 pmid:3280462
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Davies BL,
    2. Hibberd RD,
    3. Ng WS, et al
    . The development of a surgeon robot for prostatectomies. Proc Inst Mech Eng H 1991;205:35–38 doi:10.1243/PIME_PROC_1991_205_259_02 pmid:1670073
    CrossRefPubMed
  4. 4.↵
    1. Sung GT,
    2. Gill IS
    . Robotic laparoscopic surgery: a comparison of the DA Vinci and Zeus systems. Urology 2001;58:893–98 doi:10.1016/S0090-4295(01)01423-6 pmid:11744453
    CrossRefPubMedWeb of Science
  5. 5.↵
    1. Negoro M,
    2. Tanimoto M,
    3. Arai F, et al
    . An intelligent catheter system robotic controlled catheter system. Interv Neuroradiol 2001;7:111–13 doi:10.1177/15910199010070S116 pmid:20663387
    CrossRefPubMed
  6. 6.↵
    1. Beyar R,
    2. Wenderow T,
    3. Lindner D, et al
    . Concept, design and pre-clinical studies for remote control percutaneous coronary interventions. EuroIntervention 2005;1:340–45 pmid:19758927
    PubMed
  7. 7.↵
    1. Weisz G,
    2. Metzger DC,
    3. Caputo RP, et al
    . Safety and feasibility of robotic percutaneous coronary intervention: PRECISE (Percutaneous Robotically-Enhanced Coronary Intervention) study. J Am Coll Cardiol 2013;61:1596–1600 doi:10.1016/j.jacc.2012.12.045 pmid:23500318
    FREE Full Text
  8. 8.↵
    1. Mahmud E,
    2. Naghi J,
    3. Ang L, et al
    . Demonstration of the safety and feasibility of robotically assisted percutaneous coronary intervention in complex coronary lesions: results of the CORA-PCI Study (Complex Robotically Assisted Percutaneous Coronary Intervention). JACC Cardiovasc Interv 2017;10:1320–27 doi:10.1016/j.jcin.2017.03.050 pmid:28683937
    Abstract/FREE Full Text
  9. 9.↵
    1. Kim KP,
    2. Miller DL,
    3. Balter S, et al
    . Occupational radiation doses to operators performing cardiac catheterization procedures. Health Phys 2008;94:211–27 doi:10.1097/01.HP.0000290614.76386.35 pmid:18301095
    CrossRefPubMedWeb of Science
  10. 10.↵
    1. Roguin A,
    2. Goldstein J,
    3. Bar O
    . Brain tumours among interventional cardiologists: a cause for alarm: report of four new cases from two cities and a review of the literature. EuroIntervention 2012;7:1081–86 [Database] doi:10.4244/EIJV7I9A172 pmid:22207231
    CrossRefPubMedWeb of Science
  11. 11.↵
    1. Roguin A,
    2. Goldstein J,
    3. Bar O, et al
    . Brain and neck tumors among physicians performing interventional procedures. Am J Cardiol 2013;111:1368–72 doi:10.1016/j.amjcard.2012.12.060 pmid:23419190
    CrossRefPubMed
  12. 12.↵
    1. Rajaraman P,
    2. Doody MM,
    3. Yu CL, et al
    . Cancer Risks in U.S.: radiologic technologists working with fluoroscopically guided interventional procedures, 1994-2008. AJR Am J Roentgenol 2016;206:1101–08; quiz 1109 doi:10.2214/AJR.15.15265 pmid:26998721
    CrossRefPubMed
  13. 13.↵
    1. El-Sayed T,
    2. Patel AS,
    3. Cho JS, et al
    . Radiation-induced DNA damage in operators performing endovascular aortic repair. Circulation 2017;136:2406–16 doi:10.1161/CIRCULATIONAHA.117.029550 pmid:29054934
    Abstract/FREE Full Text
  14. 14.↵
    1. Plourde G,
    2. Pancholy SB,
    3. Nolan J, et al
    . Radiation exposure in relation to the arterial access site used for diagnostic coronary angiography and percutaneous coronary intervention: a systematic review and meta-analysis. Lancet 2015;386:2192–2203 doi:10.1016/S0140-6736(15)00305-0 pmid:26411986
    CrossRefPubMed
  15. 15.↵
    1. Smilowitz NR,
    2. Balter S,
    3. Weisz G
    . Occupational hazards of interventional cardiology. Cardiovasc Revasc Med 2013;14:223–28 doi:10.1016/j.carrev.2013.05.002 pmid:23759715
    CrossRefPubMed
  16. 16.↵
    1. Andreassi MG,
    2. Piccaluga E,
    3. Gargani L, et al
    . Subclinical carotid atherosclerosis and early vascular aging from long-term low-dose ionizing radiation exposure: a genetic, telomere, and vascular ultrasound study in cardiac catheterization laboratory staff. JACC Cardiovasc Interv 2015;8:616–67 doi:10.1016/j.jcin.2014.12.233 pmid:25907089
    CrossRefPubMed
  17. 17.↵
    1. Goldstein JA,
    2. Balter S,
    3. Cowley M, et al
    ; Interventional Committee of the Society of Cardiovascular Interventions. Occupational hazards of interventional cardiologists: prevalence of orthopedic health problems in contemporary practice. Catheter Cardiovasc Interv 2004;63:407–11 doi:10.1002/ccd.20201 pmid:15558765
    CrossRefPubMedWeb of Science
  18. 18.↵
    1. Parra-Farinas C
    . How to fight the fear under the x-ray beam: interventional neuroradiology fellow mom to be. Stroke 2020;51:e121–23 doi:10.1161/STROKEAHA.120.029655 pmid:32482140
    CrossRefPubMed
  19. 19.↵
    1. Vu CT,
    2. Elder DH
    . Pregnancy and the working interventional radiologist. Semin Intervent Radiology 2013;30:403–07 doi:10.1055/s-0033-1359735 pmid:24436568
    CrossRefPubMed
  20. 20.↵
    1. Patel TM,
    2. Shah SC,
    3. Soni YY, et al
    . Comparison of robotic percutaneous coronary intervention with traditional percutaneous coronary intervention: a propensity score-matched analysis of a large cohort. Circ Cardiovasc Interv 2020;13:e008888 doi:10.1161/CIRCINTERVENTIONS.119.008888 pmid:32406263
    CrossRefPubMed
  21. 21.↵
    1. Tabaza L,
    2. Virk HU,
    3. Janzer S, et al
    . Robotic-assisted percutaneous coronary intervention in a COVID-19 patient. Catheter Cardiovasc Interv 2020 May 20. [Epub ahead of print] doi:10.1002/ccd.28982 pmid:32433796
    CrossRefPubMed
  22. 22.↵
    1. Britz GW,
    2. Tomas J,
    3. Lumsden A
    . Feasibility of robotic-assisted neurovascular interventions: initial experience in flow model and porcine model. Neurosurgery 2020;86:309–14 doi:10.1093/neuros/nyz064 pmid:30993336
    CrossRefPubMed
  23. 23.↵
    1. Lu WS,
    2. Xu WY,
    3. Pan F, et al
    . Clinical application of a vascular interventional robot in cerebral angiography. Int J Med Robot 2016;12:132–36 doi:10.1002/rcs.1650 pmid:25782077
    CrossRefPubMed
  24. 24.↵
    1. Guo J,
    2. Guo S,
    3. Xiao N, et al
    . A novel robotic catheter system with force and visual feedback for vascular interventional surgery. International Journal of Mechatronics and Automation 2012;2:15–24 doi:10.1504/IJMA.2012.046583
    CrossRef
  25. 25.↵
    1. Wang K,
    2. Chen B,
    3. Lu Q, et al
    . Design and performance evaluation of real-time endovascular interventional surgical robotic system with high accuracy. Int J Med Robot 2018;14:e1915 doi:10.1002/rcs.1915 pmid:29761842
    CrossRefPubMed
  26. 26.↵
    1. Arai F,
    2. Fujimura R,
    3. Fukuda T, et al
    . New catheter driving method using linear stepping mechanism for intravascular neurosurgery. In: Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat No 02CH37292), Washington, DC. May 11–15, 2002:2944–49
  27. 27.↵
    1. Dabus G,
    2. Gerstle RJ,
    3. Cross DT, et al
    . Neuroendovascular magnetic navigation: clinical experience in ten patients. Neuroradiology 2007;49:351–55 doi:10.1007/s00234-006-0202-0 pmid:17216520
    CrossRefPubMed
  28. 28.↵
    1. Jin QI,
    2. Pehrson S,
    3. Jacobsen PK, et al
    . Efficacy and safety of atrial fibrillation ablation using remote magnetic navigation: experience from 1,006 procedures. J Cardiovasc Electrophysiol 2016;27:S23–28 doi:10.1111/jce.12929 pmid:26969219
    CrossRefPubMed
  29. 29.↵
    1. Krings T,
    2. Finney J,
    3. Niggemann P, et al
    . Magnetic versus manual guidewire manipulation in neuroradiology: in vitro results. Neuroradiology 2006;48:394–401 doi:10.1007/s00234-006-0082-3 pmid:16622696
    CrossRefPubMed
  30. 30.↵
    1. Harrison J,
    2. Ang L,
    3. Naghi J, et al
    . Robotically-assisted percutaneous coronary intervention: reasons for partial manual assistance or manual conversion. Cardiovasc Revasc Med 2018;19:526–31 doi:10.1016/j.carrev.2017.11.003 pmid:29221959
    CrossRefPubMed
  31. 31.↵
    CorPath® GRX Neuro Study. https://ClinicalTrials.gov/show/NCT04236856. Accessed August 15, 2020
  32. 32.↵
    1. Ryan Madder,
    2. William Lombardi,
    3. Manish Parikh, et al
    . TCT-539 impact of a novel advanced robotic wiring algorithm on time to wire a coronary artery bifuraction in a porcine model. J Am Coll Cardiol 2017;70:B223 doi:10.1016/j.jacc.2017.09.712
    CrossRef
  33. 33.↵
    1. Al Nooryani A,
    2. Aboushokka W
    . Rotate-on-retract procedural automation for robotic-assisted percutaneous coronary intervention: first clinical experience. Case Rep Cardiol 2018;2018:6086034 doi:10.1155/2018/6086034 pmid:30671266
    CrossRefPubMed
  34. 34.↵
    1. Meyers PM,
    2. Schumacher HC,
    3. Tanji K, et al
    . Use of stents to treat intracranial cerebrovascular disease. Annu Rev Med 2007;58:107–22 doi:10.1146/annurev.med.58.121205.100631 pmid:17217328
    CrossRefPubMedWeb of Science
  35. 35.↵
    1. Britz GW,
    2. Panesar SS,
    3. Falb P, et al
    . Neuroendovascular-specific engineering modifications to the CorPath GRX Robotic System. J Neurosurg 2019 Nov 29. [Epub ahead of print] doi:10.3171/2019.9.JNS192113 pmid:31783367
    CrossRefPubMed
  36. 36.↵
    1. Mendes Pereira V,
    2. Cancelliere NM,
    3. Nicholson P, et al
    . First-in-human, robotic-assisted neuroendovascular intervention. J Neurointerv Surg 2020;12:338–40 doi:10.1136/neurintsurg-2019-015671.rep pmid:32132138
    Abstract/FREE Full Text
  37. 37.↵
    1. Guo J,
    2. Jin X,
    3. Guo S
    . Study of the operational safety of a vascular interventional surgical robotic system. Micromachines (Basel) 2018;9:119 doi:10.3390/mi9030119 pmid:30424053
    CrossRefPubMed
  38. 38.↵
    1. Saver JL,
    2. Goyal M,
    3. van der Lugt A, et al
    ; HERMES Collaborators. Time to treatment with endovascular thrombectomy and outcomes from ischemic stroke: a meta-analysis. JAMA 2016;316:1279–88 doi:10.1001/jama.2016.13647 pmid:27673305
    CrossRefPubMed
  39. 39.↵
    1. Sarraj A,
    2. Savitz S,
    3. Pujara D, et al
    . Endovascular thrombectomy for acute ischemic strokes: current US access paradigms and optimization methodology. Stroke 2020;51:1207–17 doi:10.1161/STROKEAHA.120.028850 pmid:32078480
    CrossRefPubMed
  40. 40.↵
    1. He AH,
    2. Churilov L,
    3. Mitchell PJ, et al
    . Every 15-min delay in recanalization by intra-arterial therapy in acute ischemic stroke increases risk of poor outcome. Int J Stroke 2015;10:1062–67 doi:10.1111/ijs.12495 pmid:25918863
    CrossRefPubMed
  41. 41.↵
    1. Snyder T,
    2. Agarwal S,
    3. Huang J, et al
    . Stroke treatment delay limits outcome after mechanical thrombectomy: stratification by arrival time and ASPECTS. J Neuroimaging 2020;30:625–30 doi:10.1111/jon.12729 pmid:32592619
    CrossRefPubMed
  42. 42.↵
    1. Muller-Barna P,
    2. Hubert GJ,
    3. Boy S, et al
    . TeleStroke units serving as a model of care in rural areas: 10-year experience of the TeleMedical Project for Integrative Stroke Care. Stroke 2014;45:2739–44 doi:10.1161/STROKEAHA.114.006141 pmid:25147327
    Abstract/FREE Full Text
  43. 43.↵
    1. Audebert HJ,
    2. Schultes K,
    3. Tietz V, et al
    ; Telemedical Project for Integrative Stroke Care (TEMPiS). Long-term effects of specialized stroke care with telemedicine support in community hospitals on behalf of the Telemedical Project for Integrative Stroke Care (TEMPiS). Stroke 2009;40:902–08 doi:10.1161/STROKEAHA.108.529255 pmid:19023095
    Abstract/FREE Full Text
  44. 44.↵
    1. El Nawar R,
    2. Lapergue B,
    3. Piotin M, et al
    ; ETIS Investigators. Higher annual operator volume is associated with better reperfusion rates in stroke patients treated by mechanical thrombectomy: the ETIS Registry. JACC Cardiovasc Interv 2019;12:385–91 doi:10.1016/j.jcin.2018.12.007 pmid:30784645
    Abstract/FREE Full Text
  45. 45.↵
    1. Bechstein M,
    2. Elsheikh S,
    3. Wodarg F, et al
    . Interhospital teleproctoring of endovascular intracranial aneurysm treatment using a dedicated live-streaming technology: first experiences during the COVID-19 pandemic. BMJ Case Rep 2020;13:e016722 doi:10.1136/bcr-2020-016722 pmid:33012707
    CrossRefPubMed
  46. 46.↵
    1. Lu WS,
    2. Wang DM,
    3. Liu D, et al
    . Regarding “Application of robotic telemanipulation system in vascular interventional surgery”. J Vasc Surg 2013;57:1452–53 doi:10.1016/j.jvs.2012.12.068 pmid:23601603
    CrossRefPubMed
  47. 47.↵
    1. Madder RD,
    2. VanOosterhout SM,
    3. Jacoby ME, et al
    . Percutaneous coronary intervention using a combination of robotics and telecommunications by an operator in a separate physical location from the patient: an early exploration into the feasibility of telestenting (the REMOTE-PCI study). EuroIntervention 2017;12:1569–76 doi:10.4244/EIJ-D-16-00363 pmid:28105993
    CrossRefPubMed
  48. 48.↵
    1. Patel TM,
    2. Shah SC,
    3. Pancholy SB
    . Long distance tele-robotic-assisted percutaneous coronary intervention: a report of first-in-human experience. EClinicalMedicine 2019;14:53–58 doi:10.1016/j.eclinm.2019.07.017 pmid:31709402
    CrossRefPubMed
  49. 49.↵
    1. Rayman R,
    2. Croome K,
    3. Galbraith N, et al
    . Long-distance robotic telesurgery: a feasibility study for care in remote environments. Int J Med Robot 2006;2:216–24 doi:10.1002/rcs.99 pmid:17520635
    CrossRefPubMedWeb of Science
  50. 50.↵
    1. Xu S,
    2. Perez M,
    3. Yang K, et al
    . Determination of the latency effects on surgical performance and the acceptable latency levels in telesurgery using the dV-Trainer® simulator. Surg Endosc 2014;28:2569–76 doi:10.1007/s00464-014-3504-z pmid:24671353
    CrossRefPubMed
  51. 51.↵
    1. Madder RD,
    2. VanOosterhout S,
    3. Mulder A, et al
    . Network latency and long-distance robotic telestenting: exploring the potential impact of network delays on telestenting performance. Catheter Cardiovasc Interv 2020;95:914–19 doi:10.1002/ccd.28425 pmid:31410958
    CrossRefPubMed
  52. 52.↵
    1. Vuong SM,
    2. Carroll CP,
    3. Tackla RD, et al
    . Application of emerging technologies to improve access to ischemic stroke care. Neurosurg Focus 2017;42:E8 doi:10.3171/2017.1.FOCUS16520 pmid:28366070
    CrossRefPubMed
  53. 53.↵
    1. Sajja KC,
    2. Sweid A,
    3. Al Saiegh F, et al
    . Endovascular robotic: feasibility and proof of principle for diagnostic cerebral angiography and carotid artery stenting. J Neurointerv Surg 2020;12:345–49 doi:10.1136/neurintsurg-2019-015763 pmid:32115436
    Abstract/FREE Full Text
  54. 54.↵
    1. Weinberg JH,
    2. Sweid A,
    3. Sajja K, et al
    . Comparison of robotic-assisted carotid stenting and manual carotid stenting through the transradial approach. J Neurosurg 2020 Aug 28. [Epub ahead of print] doi:10.3171/2020.5.JNS201421 pmid:32858520
    CrossRefPubMed
  55. 55.↵
    1. Nogueira RG,
    2. Sachdeva R,
    3. Al-Bayati AR, et al
    . Robotic assisted carotid artery stenting for the treatment of symptomatic carotid disease: technical feasibility and preliminary results. J Neurointerv Surg 2020;12:341–44 doi:10.1136/neurintsurg-2019-015754 pmid:32115435
    Abstract/FREE Full Text
  56. 56.↵
    1. Kreiser K,
    2. Strober L,
    3. Gehling KG, et al
    . Simulation training in neuroangiography-validation and effectiveness. Clin Neuroradiol 2020 Apr 17. [Epub ahead of print] doi:10.1007/s00062-020-00902-5 pmid:32303789
    CrossRefPubMed
  57. 57.↵
    1. Panesar SS,
    2. Ashkan K
    . Surgery in space. Br J Surg 2018;105:1234–43 doi:10.1002/bjs.10908 pmid:29923181
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 42 (5)
American Journal of Neuroradiology
Vol. 42, Issue 5
1 May 2021
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
A Review of Robotic Interventional Neuroradiology
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
C.B. Beaman, N. Kaneko, P.M. Meyers, S. Tateshima
A Review of Robotic Interventional Neuroradiology
American Journal of Neuroradiology May 2021, 42 (5) 808-814; DOI: 10.3174/ajnr.A6976

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
A Review of Robotic Interventional Neuroradiology
C.B. Beaman, N. Kaneko, P.M. Meyers, S. Tateshima
American Journal of Neuroradiology May 2021, 42 (5) 808-814; DOI: 10.3174/ajnr.A6976
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATION:
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Robotic Diagnostic Cerebral Angiography: A Multicenter Experience of 113 Patients
  • Efficacy and safety of a neurointerventional operation robotic assistance system in cerebral angiography
  • Perspectives on Remote Robotic-Assisted Stroke Treatment: A Commentary Paper
  • Automated catheter segmentation and tip detection in cerebral angiography with topology-aware geometric deep learning
  • A technical guide to robotic catheter angiography with the Corindus CorPath GRX system
  • Robotics in neurointerventional surgery: a systematic review of the literature
  • Complete robotic intervention for acute epistaxis in a patient with COVID-19 pneumonia: technical considerations and device selection tips
  • Crossref (51)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Dexterous helical magnetic robot for improved endovascular access
    R. Dreyfus, Q. Boehler, S. Lyttle, P. Gruber, J. Lussi, C. Chautems, S. Gervasoni, J. Berberat, D. Seibold, N. Ochsenbein-Kölble, M. Reinehr, M. Weisskopf, L. Remonda, B. J. Nelson
    Science Robotics 2024 9 87
  • Robotics in neurointerventional surgery: a systematic review of the literature
    William Crinnion, Ben Jackson, Avnish Sood, Jeremy Lynch, Christos Bergeles, Hongbin Liu, Kawal Rhode, Vitor Mendes Pereira, Thomas C Booth
    Journal of NeuroInterventional Surgery 2022 14 6
  • An Endovascular Catheterization Robotic System Using Collaborative Operation with Magnetically Controlled Haptic Force Feedback
    Xinming Li, Shuxiang Guo, Peng Shi, Xiaoliang Jin, Masahiko Kawanishi
    Micromachines 2022 13 4
  • Robotics in Interventional Radiology: Review of Current and Future Applications
    Carolina Lanza, Serena Carriero, Elvira Francisca Maria Buijs, Sveva Mortellaro, Caterina Pizzi, Lucilla Violetta Sciacqua, Pierpaolo Biondetti, Salvatore Alessio Angileri, Andrea Antonio Ianniello, Anna Maria Ierardi, Gianpaolo Carrafiello
    Technology in Cancer Research & Treatment 2023 22
  • Current State of Robotics in Interventional Radiology
    Ghazal Najafi, Kornelia Kreiser, Mohamed E. M. K. Abdelaziz, Mohamad S. Hamady
    CardioVascular and Interventional Radiology 2023 46 5
  • Technical and Clinical Progress on Robot-Assisted Endovascular Interventions: A Review
    Wenke Duan, Toluwanimi Akinyemi, Wenjing Du, Jun Ma, Xingyu Chen, Fuhao Wang, Olatunji Omisore, Jingjing Luo, Hongbo Wang, Lei Wang
    Micromachines 2023 14 1
  • The Critical Technologies of Vascular Interventional Robotic Catheterization: A Review
    Baozhen Ren, Yan Zhao, Jianhua Zhang, Hui Li, Kexiang Li, Jianjun Zhang
    IEEE Sensors Journal 2023 23 24
  • Adapting Neural-Based Models for Position Error Compensation in Robotic Catheter Systems
    Toluwanimi O. Akinyemi, Olatunji M. Omisore, Xingyu Chen, Wenke Duan, Wenjing Du, Guanlin Yi, Lei Wang
    Applied Sciences 2022 12 21
  • Robotics and Artificial Intelligence in Endovascular Neurosurgery
    Javier Bravo, Arvin R Wali, Brian R Hirshman, Tilvawala Gopesh, Jeffrey A Steinberg, Bernard Yan, J. Scott Pannell, Alexander Norbash, James Friend, Alexander A Khalessi, David Santiago-Dieppa
    Cureus 2022
  • Automated catheter segmentation and tip detection in cerebral angiography with topology-aware geometric deep learning
    Rahul Ghosh, Kelvin Wong, Yi Jonathan Zhang, Gavin W Britz, Stephen T C Wong
    Journal of NeuroInterventional Surgery 2024 16 3

More in this TOC Section

  • Neuroform Atlas Stent for Intracranial Aneurysms
  • Transophthalmic Artery Embolization of Meningiomas
  • Factors Associated with Major Re-recanalization
Show more Neurointervention

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire