Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates


Improved Turnaround Times | Median time to first decision: 12 days

Research ArticleAdult Brain
Open Access

MRI Features May Predict Molecular Features of Glioblastoma in Isocitrate Dehydrogenase Wild-Type Lower-Grade Gliomas

C.J. Park, K. Han, H. Kim, S.S. Ahn, D. Choi, Y.W. Park, J.H. Chang, S.H. Kim, S. Cha and S.-K. Lee
American Journal of Neuroradiology March 2021, 42 (3) 448-456; DOI: https://doi.org/10.3174/ajnr.A6983
C.J. Park
aFrom the Department of Radiology (C.J.P.), Yonsei University College of Medicine, Seoul, Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C.J. Park
K. Han
bDepartment of Radiology (K.H., H.K., S.S.A., Y.W.P., S.-K.L.), Research Institute of Radiological Sciences, Center for Clinical Imaging Data Science
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for K. Han
H. Kim
bDepartment of Radiology (K.H., H.K., S.S.A., Y.W.P., S.-K.L.), Research Institute of Radiological Sciences, Center for Clinical Imaging Data Science
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for H. Kim
S.S. Ahn
bDepartment of Radiology (K.H., H.K., S.S.A., Y.W.P., S.-K.L.), Research Institute of Radiological Sciences, Center for Clinical Imaging Data Science
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S.S. Ahn
D. Choi
eDepartment of Computer Science (D.C.), Yonsei University, Seoul, Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for D. Choi
Y.W. Park
bDepartment of Radiology (K.H., H.K., S.S.A., Y.W.P., S.-K.L.), Research Institute of Radiological Sciences, Center for Clinical Imaging Data Science
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Y.W. Park
J.H. Chang
cDepartment of Neurosurgery (J.H.C.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J.H. Chang
S.H. Kim
dDepartment of Pathology (S.H.K.), Yonsei University College of Medicine, Seoul, Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S.H. Kim
S. Cha
fDepartment of Radiology and Biomedical Imaging (S.C.), University of California San Francisco, San Francisco, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S. Cha
S.-K. Lee
bDepartment of Radiology (K.H., H.K., S.S.A., Y.W.P., S.-K.L.), Research Institute of Radiological Sciences, Center for Clinical Imaging Data Science
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S.-K. Lee
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Yan H,
    2. Parsons DW,
    3. Jin G, et al
    . IDH1 and IDH2 mutations in gliomas. N Engl J Med 2009;360:765–73 doi:10.1056/NEJMoa0808710 pmid:19228619
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. Louis DN,
    2. Perry A,
    3. Reifenberger G, et al
    . The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 2016;131:803–20 doi:10.1007/s00401-016-1545-1 pmid:27157931
    CrossRefPubMed
  3. 3.↵
    1. Jiao Y,
    2. Killela PJ,
    3. Reitman ZJ, et al
    . Frequent ATRX, CIC, FUBP1 and IDH1 mutations refine the classification of malignant gliomas. Oncotarget 2012;3:709–22 doi:10.18632/oncotarget.588 pmid:22869205
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Brat DJ,
    2. Verhaak RG,
    3. Aldape KD, et al
    ; Cancer Genome Atlas Research Network. Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med 2015;372:2481–98 doi:10.1056/NEJMoa1402121 pmid:26061751
    CrossRefPubMed
  5. 5.↵
    1. Metellus P,
    2. Coulibaly B,
    3. Colin C, et al
    . Absence of IDH mutation identifies a novel radiologic and molecular subtype of WHO grade II gliomas with dismal prognosis. Acta Neuropathol 2010;120:719–29 doi:10.1007/s00401-010-0777-8 pmid:21080178
    CrossRefPubMedWeb of Science
  6. 6.↵
    1. Eckel-Passow JE,
    2. Lachance DH,
    3. Molinaro AM, et al
    . Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med 2015;372:2499–508 doi:10.1056/NEJMoa1407279 pmid:26061753
    CrossRefPubMed
  7. 7.↵
    1. Aibaidula A,
    2. Chan AK,
    3. Shi Z, et al
    . Adult IDH wild-type lower-grade gliomas should be further stratified. Neuro Oncol 2017;19:1327–37 doi:10.1093/neuonc/nox078 pmid:28575485
    CrossRefPubMed
  8. 8.↵
    1. Chan AK,
    2. Yao Y,
    3. Zhang Z, et al
    . TERT promoter mutations contribute to subset prognostication of lower-grade gliomas. Mod Pathol 2015;28:177–86 doi:10.1038/modpathol.2014.94 pmid:25081751
    CrossRefPubMed
  9. 9.↵
    1. Chan AK,
    2. Yao Y,
    3. Zhang Z, et al
    . Combination genetic signature stratifies lower-grade gliomas better than histological grade. Oncotarget 2015;6:20885–901 doi:10.18632/oncotarget.4928 pmid:26369702
    CrossRefPubMed
  10. 10.↵
    1. Brat DJ,
    2. Aldape K,
    3. Colman H, et al
    . cIMPACT-NOW update 3: recommended diagnostic criteria for “Diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma, WHO grade IV.” Acta Neuropathol 2018;136:805–10 doi:10.1007/s00401-018-1913-0 pmid:30259105
    CrossRefPubMed
  11. 11.↵
    1. Gutman DA,
    2. Cooper LA,
    3. Hwang SN, et al
    . MR imaging predictors of molecular profile and survival: multi-institutional study of the TCGA glioblastoma data set. Radiology 2013;267:560–69 doi:10.1148/radiol.13120118 pmid:23392431
    CrossRefPubMedWeb of Science
  12. 12.↵
    1. Gutman DA,
    2. Dunn WD,
    3. Grossmann P, et al
    . Somatic mutations associated with MRI-derived volumetric features in glioblastoma. Neuroradiology 2015;57:1227–37 doi:10.1007/s00234-015-1576-7 pmid:26337765
    CrossRefPubMed
  13. 13.↵
    1. Park YW,
    2. Han K,
    3. Ahn SS, et al
    . Prediction of IDH1-mutation and 1p/19q-codeletion status using preoperative MR imaging phenotypes in lower grade gliomas. AJNR Am J Neuroradiol 2018;39:37–42 doi:10.3174/ajnr.A5421 pmid:29122763
    Abstract/FREE Full Text
  14. 14.↵
    1. Gillies RJ,
    2. Kinahan PE,
    3. Hricak H
    . Radiomics: images are more than pictures, they are data. Radiology 2016;278:563–77 doi:10.1148/radiol.2015151169 pmid:26579733
    CrossRefPubMed
  15. 15.↵
    1. Aerts HJ,
    2. Velazquez ER,
    3. Leijenaar RT, et al
    . Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 2014;5:4006 doi:10.1038/ncomms5006 pmid:24892406
    CrossRefPubMed
  16. 16.↵
    1. Molina D,
    2. Pérez-Beteta J,
    3. Martínez-González A, et al
    . Influence of gray level and space discretization on brain tumor heterogeneity measures obtained from magnetic resonance images. Comput Biol Med 2016;78:49–57 doi:10.1016/j.compbiomed.2016.09.011 pmid:27658261
    CrossRefPubMed
  17. 17.↵
    1. Li Y,
    2. Liu X,
    3. Xu K, et al
    . MRI features can predict EGFR expression in lower grade gliomas: a voxel-based radiomic analysis. Eur Radiol 2018;28:356–62 doi:10.1007/s00330-017-4964-z pmid:28755054
    CrossRefPubMed
  18. 18.↵
    1. Li Y,
    2. Qian Z,
    3. Xu K, et al
    . MRI features predict p53 status in lower-grade gliomas via a machine-learning approach. Neuroimage Clin 2018;17:306–11 doi:10.1016/j.nicl.2017.10.030 pmid:29527478
    CrossRefPubMed
  19. 19.↵
    1. Li Y,
    2. Qian Z,
    3. Xu K, et al
    . Radiomic features predict Ki-67 expression level and survival in lower grade gliomas. J Neurooncol 2017;135:317–24 doi:10.1007/s11060-017-2576-8 pmid:28900812
    CrossRefPubMed
  20. 20.↵
    1. Pedano N,
    2. Flanders A,
    3. Scarpace L, et al
    . Radiology data from the Cancer Genome Atlas low grade glioma [TCGA-LGG] collection. The Cancer Imaging Archive 2016 doi:10.7937/K9/TCIA.2016.L4LTD3TK
    CrossRef
  21. 21.↵
    Wiki for the VASARI feature set. The National Cancer Institute Website. https://wiki.cancerimagingarchive.net/display/Public/VASARI+Research+Project. Updated March 30, 2020. Accessed September 17, 2019
  22. 22.↵
    1. Tustison NJ,
    2. Avants BB,
    3. Cook PA, et al
    . N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 2010;29:1310–20 doi:10.1109/TMI.2010.2046908 pmid:20378467
    CrossRefPubMedWeb of Science
  23. 23.↵
    1. Sled JG,
    2. Zijdenbos AP,
    3. Evans AC
    . A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 1998;17:87–97 doi:10.1109/42.668698 pmid:9617910
    CrossRefPubMedWeb of Science
  24. 24.↵
    1. Shinohara RT,
    2. Sweeney EM,
    3. Goldsmith J, et al
    . Statistical normalization techniques for magnetic resonance imaging. Neuroimage Clin 2014;6:9–19 doi:10.1016/j.nicl.2014.08.008 pmid:25379412
    CrossRefPubMed
  25. 25.↵
    1. van Griethuysen JJ,
    2. Fedorov A,
    3. Parmar C, et al
    . Computational radiomics system to decode the radiographic phenotype. Cancer Res 2017;77:e104–07 doi:10.1158/0008-5472.CAN-17-0339 pmid:29092951
    Abstract/FREE Full Text
  26. 26.↵
    1. Takano S,
    2. Tian W,
    3. Matsuda M, et al
    . Detection of IDH1 mutation in human gliomas: comparison of immunohistochemistry and sequencing. Brain Tumor Pathol 2011;28:115–23 doi:10.1007/s10014-011-0023-7 pmid:21344322
    CrossRefPubMedWeb of Science
  27. 27.↵
    1. Choi J,
    2. Lee EY,
    3. Shin KJ, et al
    . IDH1 mutation analysis in low cellularity specimen: a limitation of diagnostic accuracy and a proposal for the diagnostic procedure. Pathol Res Pract 2013;209:284–90 doi:10.1016/j.prp.2013.02.010 pmid:23561624
    CrossRefPubMed
  28. 28.↵
    1. Sahm F,
    2. Schrimpf D,
    3. Jones DTW, et al
    . Next-generation sequencing in routine brain tumor diagnostics enables an integrated diagnosis and identifies actionable targets. Acta Neuropathol 2016;131:903–10 doi:10.1007/s00401-015-1519-8 pmid:26671409
    CrossRefPubMed
  29. 29.↵
    1. Na K,
    2. Kim HS,
    3. Shim HS, et al
    . Targeted next-generation sequencing panel (TruSight Tumor 170) in diffuse glioma: a single institutional experience of 135 cases. J Neurooncol 2019;142:445–54 doi:10.1007/s11060-019-03114-1 pmid:30710203
    CrossRefPubMed
  30. 30.↵
    1. Friedman J,
    2. Hastie T,
    3. Tibshirani R
    . Regularization paths for generalized linear models via coordinate descent. J Stat Softw 2010;33:1–22 pmid:20808728
    CrossRefPubMedWeb of Science
  31. 31.↵
    1. Dormann CF,
    2. Elith J,
    3. Bacher S, et al
    . Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 2013;36:27–46 doi:10.1111/j.1600-0587.2012.07348.x
    CrossRefPubMedWeb of Science
  32. 32.↵
    1. Kuhn M
    . Building predictive models in R using the caret package. J Stat Soft 2008;28 doi:10.18637/jss.v028.i05
    CrossRef
  33. 33.↵
    1. Landis JR,
    2. Koch GG
    . The measurement of observer agreement for categorical data. Biometrics 1977;33:159–74 pmid:843571
    CrossRefPubMedWeb of Science
  34. 34.↵
    1. DeLong ER,
    2. DeLong DM,
    3. Clarke-Pearson DL
    . Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 1988;44:837–45 pmid:3203132
    CrossRefPubMedWeb of Science
  35. 35.↵
    1. Bale TA,
    2. Jordan JT,
    3. Rapalino O, et al
    . Financially effective test algorithm to identify an aggressive, EGFR-amplified variant of IDH-wildtype, lower-grade diffuse glioma. Neuro Oncol 2019;21:596–605 doi:10.1093/neuonc/noy201 pmid:30496526
    CrossRefPubMed
  36. 36.↵
    1. Weller M,
    2. Weber RG,
    3. Willscher E, et al
    . Molecular classification of diffuse cerebral WHO grade II/III gliomas using genome- and transcriptome-wide profiling improves stratification of prognostically distinct patient groups. Acta Neuropathol 2015;129:679–93 doi:10.1007/s00401-015-1409-0 pmid:25783747
    CrossRefPubMed
  37. 37.↵
    1. Wijnenga MM,
    2. Dubbink HJ,
    3. French PJ, et al
    . Molecular and clinical heterogeneity of adult diffuse low-grade IDH wild-type gliomas: assessment of TERT promoter mutation and chromosome 7 and 10 copy number status allows superior prognostic stratification. Acta Neuropathol 2017;134:957–59 doi:10.1007/s00401-017-1781-z pmid:29052002
    CrossRefPubMed
  38. 38.↵
    1. Aoki K,
    2. Nakamura H,
    3. Suzuki H, et al
    . Prognostic relevance of genetic alterations in diffuse lower-grade gliomas. Neuro Oncol 2018;20:66–77 doi:10.1093/neuonc/nox132 pmid:29016839
    CrossRefPubMed
  39. 39.↵
    1. Stichel D,
    2. Ebrahimi A,
    3. Reuss D, et al
    . Distribution of EGFR amplification, combined chromosome 7 gain and chromosome 10 loss, and TERT promoter mutation in brain tumors and their potential for the reclassification of IDH wild type astrocytoma to glioblastoma. Acta Neuropathol 2018;136:793–803 doi:10.1007/s00401-018-1905-0 pmid:30187121
    CrossRefPubMed
  40. 40.↵
    1. Gupta A,
    2. Young RJ,
    3. Shah AD, et al
    . Pretreatment dynamic susceptibility contrast MRI perfusion in glioblastoma: prediction of EGFR gene amplification. Clin Neuroradiol 2015;25:143–50 doi:10.1007/s00062-014-0289-3 pmid:24474262
    CrossRefPubMed
  41. 41.↵
    1. Ivanidze J,
    2. Lum M,
    3. Pisapia D, et al
    . MRI features associated with TERT promoter mutation status in glioblastoma. J Neuroimaging 2019;29:357–63 doi:10.1111/jon.12596 pmid:30644143
    CrossRefPubMed
  42. 42.↵
    1. Akbari H,
    2. Bakas S,
    3. Pisapia JM, et al
    . In vivo evaluation of EGFRvIII mutation in primary glioblastoma patients via complex multiparametric MRI signature. Neuro Oncol 2018;20:1068–79 doi:10.1093/neuonc/noy033 pmid:29617843
    CrossRefPubMed
  43. 43.↵
    1. Bakas S,
    2. Akbari H,
    3. Pisapia J, et al
    . In vivo detection of EGFRvIII in glioblastoma via perfusion magnetic resonance imaging signature consistent with deep peritumoral infiltration: the φ-Index. Clin Cancer Res 2017;23:4724–34 doi:10.1158/1078-0432.CCR-16-1871 pmid:28428190
    Abstract/FREE Full Text
  44. 44.↵
    1. Liu X,
    2. Li Y,
    3. Qian Z, et al
    . A radiomic signature as a non-invasive predictor of progression-free survival in patients with lower-grade gliomas. Neuroimage Clin 2018;20:1070–77 doi:10.1016/j.nicl.2018.10.014 pmid:30366279
    CrossRefPubMed
  45. 45.↵
    1. Jiang C,
    2. Kong Z,
    3. Zhang Y, et al
    . Conventional magnetic resonance imaging-based radiomic signature predicts telomerase reverse transcriptase promoter mutation status in grade II and III gliomas. Neuroradiology 2020;62:803–13 doi:10.1007/s00234-020-02392-1 pmid:32239241
    CrossRefPubMed
  46. 46.↵
    1. Kros JM
    . Grading of gliomas: the road from eminence to evidence. J Neuropathol Exp Neurol 2011;70:101–09 doi:10.1097/NEN.0b013e31820681aa pmid:21343878
    CrossRefPubMed
  47. 47.↵
    1. Prayson RA,
    2. Agamanolis DP,
    3. Cohen ML, et al
    . Interobserver reproducibility among neuropathologists and surgical pathologists in fibrillary astrocytoma grading. J Neurol Sci 2000;175:33–39 doi:10.1016/s0022-510x(00)00274-4 pmid:10785254
    CrossRefPubMed
  48. 48.↵
    1. Vigneswaran K,
    2. Neill S,
    3. Hadjipanayis CG
    . Beyond the World Health Organization grading of infiltrating gliomas: advances in the molecular genetics of glioma classification. Ann Transl Med 2015;3:95 doi:10.3978/j.issn.2305-5839.2015.03.57 pmid:26015937
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 42 (3)
American Journal of Neuroradiology
Vol. 42, Issue 3
1 Mar 2021
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
MRI Features May Predict Molecular Features of Glioblastoma in Isocitrate Dehydrogenase Wild-Type Lower-Grade Gliomas
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
C.J. Park, K. Han, H. Kim, S.S. Ahn, D. Choi, Y.W. Park, J.H. Chang, S.H. Kim, S. Cha, S.-K. Lee
MRI Features May Predict Molecular Features of Glioblastoma in Isocitrate Dehydrogenase Wild-Type Lower-Grade Gliomas
American Journal of Neuroradiology Mar 2021, 42 (3) 448-456; DOI: 10.3174/ajnr.A6983

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
MRI Features May Predict Molecular Features of Glioblastoma in Isocitrate Dehydrogenase Wild-Type Lower-Grade Gliomas
C.J. Park, K. Han, H. Kim, S.S. Ahn, D. Choi, Y.W. Park, J.H. Chang, S.H. Kim, S. Cha, S.-K. Lee
American Journal of Neuroradiology Mar 2021, 42 (3) 448-456; DOI: 10.3174/ajnr.A6983
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS and METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • Molecular GBM versus Histopathological GBM: Radiology-Pathology-Genetic Correlation and the New WHO 2021 Definition of Glioblastoma
  • Radiomics Can Distinguish Pediatric Supratentorial Embryonal Tumors, High-Grade Gliomas, and Ependymomas
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • NCCT vs. MRI for Brain Atrophy in Acute Stroke
  • Clinical Outcomes After Chiari I Decompression
Show more Adult Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire