Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleHead & Neck
Open Access

Diagnostic Value of Model-Based Iterative Reconstruction Combined with a Metal Artifact Reduction Algorithm during CT of the Oral Cavity

Y. Kubo, K. Ito, M. Sone, H. Nagasawa, Y. Onishi, N. Umakoshi, T. Hasegawa, T. Akimoto and M. Kusumoto
American Journal of Neuroradiology November 2020, 41 (11) 2132-2138; DOI: https://doi.org/10.3174/ajnr.A6767
Y. Kubo
aFrom the Department of Diagnostic Radiology (Y.K., K.I., M.S., H.N., Y.O., N.U., T.H., M.K.), National Cancer Center Hospital, Tokyo, Japan
bDepartment of Cancer Medicine (Y.K., T.A.), Jikei University Graduate School of Medicine, Tokyo, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Y. Kubo
K. Ito
aFrom the Department of Diagnostic Radiology (Y.K., K.I., M.S., H.N., Y.O., N.U., T.H., M.K.), National Cancer Center Hospital, Tokyo, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for K. Ito
M. Sone
aFrom the Department of Diagnostic Radiology (Y.K., K.I., M.S., H.N., Y.O., N.U., T.H., M.K.), National Cancer Center Hospital, Tokyo, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Sone
H. Nagasawa
aFrom the Department of Diagnostic Radiology (Y.K., K.I., M.S., H.N., Y.O., N.U., T.H., M.K.), National Cancer Center Hospital, Tokyo, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for H. Nagasawa
Y. Onishi
aFrom the Department of Diagnostic Radiology (Y.K., K.I., M.S., H.N., Y.O., N.U., T.H., M.K.), National Cancer Center Hospital, Tokyo, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Y. Onishi
N. Umakoshi
aFrom the Department of Diagnostic Radiology (Y.K., K.I., M.S., H.N., Y.O., N.U., T.H., M.K.), National Cancer Center Hospital, Tokyo, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for N. Umakoshi
T. Hasegawa
aFrom the Department of Diagnostic Radiology (Y.K., K.I., M.S., H.N., Y.O., N.U., T.H., M.K.), National Cancer Center Hospital, Tokyo, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for T. Hasegawa
T. Akimoto
bDepartment of Cancer Medicine (Y.K., T.A.), Jikei University Graduate School of Medicine, Tokyo, Japan
cDivision of Radiation Oncology and Particle Therapy (T.A.), National Cancer Center Hospital East, Kashiwa, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for T. Akimoto
M. Kusumoto
aFrom the Department of Diagnostic Radiology (Y.K., K.I., M.S., H.N., Y.O., N.U., T.H., M.K.), National Cancer Center Hospital, Tokyo, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Kusumoto
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Goerres GW,
    2. Hany TF,
    3. Kamel E, et al
    . Head and neck imaging with PET and PET/CT: artefacts from dental metallic implants. Eur J Nucl Med Mol Imaging 2002;29:367–70 doi:10.1007/s00259-001-0721-1 pmid:12002712
    CrossRefPubMed
  2. 2.↵
    1. Barrett JF,
    2. Keat N
    . Artifacts in CT: recognition and avoidance. Radiographics 2004;24:1679–91 doi:10.1148/rg.246045065 pmid:15537976
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Ravishankar S,
    2. Ye JC,
    3. Fessler JA
    . Image reconstruction: from sparsity to data-adaptive methods and machine learning. Proc IEEE Inst Electr Electron Eng 2020;108:86–109 doi:10.1109/JPROC.2019.2936204 pmid:32095024
    CrossRefPubMed
  4. 4.↵
    1. Willemink MJ,
    2. Noel PB
    . The evolution of image reconstruction for CT: from filtered back projection to artificial intelligence. Eur Radiol 2019;29:2185–95 doi:10.1007/s00330-018-5810-7 pmid:30377791
    CrossRefPubMed
  5. 5.↵
    1. Herman GT
    . Fundamentals of computerized tomography: image reconstruction from projections. Springer-Verlag: London, 2009 doi:10.1007/978-1-84628-723-7
  6. 6.↵
    1. Singh S,
    2. Kalra MK,
    3. Hsieh J, et al
    . Abdominal CT: comparison of adaptive statistical iterative and filtered back projection reconstruction techniques. Radiology 2010;257:373–83 doi:10.1148/radiol.10092212 pmid:20829535
    CrossRefPubMedWeb of Science
  7. 7.↵
    1. Gervaise A,
    2. Osemont B,
    3. Lecocq S, et al
    . CT image quality improvement using adaptive iterative dose reduction with wide-volume acquisition on 320-detector CT. Eur Radiol 2012;22:295–301 doi:10.1007/s00330-011-2271-7 pmid:21927791
    CrossRefPubMed
  8. 8.↵
    1. Martinsen ACT,
    2. Sæther HK,
    3. Hol PK, et al
    . Iterative reconstruction reduces abdominal CT dose. Eur J Radiol 2012;81:1483–87 doi:10.1016/j.ejrad.2011.04.021 pmid:21543174
    CrossRefPubMed
  9. 9.↵
    1. Yu Z,
    2. Thibault JB,
    3. Bouman CA, et al
    . Fast model-based X-ray CT reconstruction using spatially nonhomogeneous ICD optimization. IEEE Trans Image Process 2011;20:161–75 doi:10.1109/TIP.2010.2058811 pmid:20643609
    CrossRefPubMed
  10. 10.↵
    1. Fleischmann D,
    2. Boas FE
    . Computed tomograph: old ideas and new technology. Eur Radiol 2011;21:510–17 doi:10.1007/s00330-011-2056-z pmid:21249371
    CrossRefPubMed
  11. 11.↵
    1. Chang W,
    2. Lee JM,
    3. Lee K, et al
    . Assessment of a model-based, iterative reconstruction algorithm (MBIR) regarding image quality and dose reduction in liver computed tomography. Invest Radiol 2013;48:598–606 doi:10.1097/RLI.0b013e3182899104 pmid:23511193
    CrossRefPubMed
  12. 12.↵
    1. Goodenberger MH,
    2. Wagner-Bartak NA,
    3. Gupta S, et al
    . Computed tomography image quality evaluation of a new iterative reconstruction algorithm in the abdomen (adaptive statistical iterative reconstruction-V): a comparison with model-based iterative reconstruction, adaptive statistical iterative reconstruction, and filtered back projection reconstructions. J Comput Assist Tomogr 2018;42:184–90 doi:10.1097/RCT.0000000000000666 pmid:28806318
    CrossRefPubMed
  13. 13.↵
    1. Noda Y,
    2. Goshima S,
    3. Koyasu H, et al
    . Renovascular CT: comparison between adaptive statistical iterative reconstruction and model-based iterative reconstruction. Clin Radiol 2017;72:901.e913–19 doi:10.1016/j.crad.2017.06.002 pmid:28673448
    CrossRefPubMed
  14. 14.↵
    1. Smith EA,
    2. Dillman JR,
    3. Goodsitt MM, et al
    . Model-based iterative reconstruction: effect on patient radiation dose and image quality in pediatric body CT. Radiology 2014;270:526–34 doi:10.1148/radiol.13130362 pmid:24091359
    CrossRefPubMed
  15. 15.↵
    1. Taguchi N,
    2. Oda S,
    3. Imuta M, et al
    . Model-based iterative reconstruction in low-radiation-dose computed tomography colonography: preoperative assessment in patients with colorectal cancer. Acad Radiol 2018;25:415–22 doi:10.1016/j.acra.2017.10.008 pmid:29191684
    CrossRefPubMed
  16. 16.↵
    1. Yasaka K,
    2. Katsura M,
    3. Akahane M, et al
    . Model-based iterative reconstruction and adaptive statistical iterative reconstruction: dose-reduced CT for detecting pancreatic calcification. Acta Radiol Open 2016;5:205846011662834 doi:10.1177/2058460116628340 pmid:27110389
    CrossRefPubMed
  17. 17.↵
    1. Yuki H,
    2. Oda S,
    3. Utsunomiya D, et al
    . Clinical impact of model-based type iterative reconstruction with fast reconstruction time on image quality of low-dose screening chest CT. Acta Radiol 2016;57:295–302 doi:10.1177/0284185115575537 pmid:25817455
    CrossRefPubMed
  18. 18.↵
    1. De Crop A,
    2. Casselman J,
    3. Van Hoof T, et al
    . Analysis of metal artifact reduction tools for dental hardware in CT scans of the oral cavity: kVp, iterative reconstruction, dual-energy CT, metal artifact reduction software—does it make a difference? Neuroradiology 2015;57:841–49 doi:10.1007/s00234-015-1537-1 pmid:25929982
    CrossRefPubMed
  19. 19.↵
    1. Boudabbous S,
    2. Arditi D,
    3. Paulin E, et al
    . Model-based iterative reconstruction (MBIR) for the reduction of metal artifacts on CT. AJR Am J Roentgenol 2015;205:380–85 doi:10.2214/AJR.14.13334 pmid:26204291
    CrossRefPubMed
  20. 20.↵
    1. Kuya K,
    2. Shinohara Y,
    3. Kato A, et al
    . Reduction of metal artifacts due to dental hardware in computed tomography angiography: assessment of the utility of model-based iterative reconstruction. Neuroradiology 2017;59:231–35 doi:10.1007/s00234-017-1811-5 pmid:28255903
    CrossRefPubMed
  21. 21.↵
    1. Yasaka K,
    2. Kamiya K,
    3. Irie R, et al
    . Metal artefact reduction for patients with metallic dental fillings in helical neck computed tomography: comparison of adaptive iterative dose reduction 3D (AIDR 3D), forward-projected model-based iterative reconstruction solution (FIRST) and AIDR 3D with single-energy metal artefact reduction (SEMAR). Dentomaxillofac Radiol 2016;45:20160114 doi:10.1259/dmfr.20160114 pmid:27268082
    CrossRefPubMed
  22. 22.↵
    1. Li H,
    2. Noel C,
    3. Chen H, et al
    . Clinical evaluation of a commercial orthopedic metal artifact reduction tool for CT simulations in radiation therapy. Med Phys 2012;39:7507–17 doi:10.1118/1.4762814 pmid:23231300
    CrossRefPubMed
  23. 23.↵
    1. Brook OR,
    2. Gourtsoyianni S,
    3. Brook A, et al
    . Spectral CT with metal artifacts reduction software for improvement of tumor visibility in the vicinity of gold fiducial markers. Radiology 2012;263:696–705 doi:10.1148/radiol.12111170 pmid:22416251
    CrossRefPubMed
  24. 24.↵
    1. Lell MM,
    2. Meyer E,
    3. Kuefner MA, et al
    . Normalized metal artifact reduction in head and neck computed tomography. Invest Radiol 2012;47:415–21 doi:10.1097/RLI.0b013e3182532f17 pmid:22659592
    CrossRefPubMed
  25. 25.↵
    1. Kidoh M,
    2. Nakaura T,
    3. Nakamura S, et al
    . Reduction of dental metallic artefacts in CT: value of a newly developed algorithm for metal artefact reduction (O-MAR). Clin Radiol 2014;69:e11–16 doi:10.1016/j.crad.2013.08.008 pmid:24156796
    CrossRefPubMed
  26. 26.↵
    1. Diehn FE,
    2. Michalak GJ,
    3. DeLone DR, et al
    . CT dental artifact: comparison of an iterative metal artifact reduction technique with weighted filtered back-projection. Acta Radiol Open 2017;6:205846011774327 doi:10.1177/2058460117743279 pmid:29225924
    CrossRefPubMed
  27. 27.↵
    1. Hakim A,
    2. Slotboom J,
    3. Lieger O, et al
    . Clinical evaluation of the iterative metal artefact reduction algorithm for post-operative CT examination after maxillofacial surgery. Dentomaxillofac Radiol 2017;46:20160355 doi:10.1259/dmfr.20160355 pmid:28112538
    CrossRefPubMed
  28. 28.↵
    1. Weiß J,
    2. Schabel C,
    3. Bongers M, et al
    . Impact of iterative metal artifact reduction on diagnostic image quality in patients with dental hardware. Acta Radiol 2017;58:279–85 doi:10.1177/0284185116646144 pmid:27166346
    CrossRefPubMed
  29. 29.↵
    1. Niehues SM,
    2. Vahldiek JL,
    3. Tröltzsch D, et al
    . Impact of single-energy metal artifact reduction on CT image quality in patients with dental hardware. Comput Biol Med 2018;103:161–66 doi:10.1016/j.compbiomed.2018.10.023 pmid:30384174
    CrossRefPubMed
  30. 30.↵
    1. Lubner MG,
    2. Pickhardt PJ,
    3. Tang J, et al
    . Reduced image noise at low-dose multidetector CT of the abdomen with prior image constrained compressed sensing algorithm. Radiology 2011;260:248–56 doi:10.1148/radiol.11101380 pmid:21436086
    CrossRefPubMed
  31. 31.↵
    1. Lin XZ,
    2. Miao F,
    3. Li JY, et al
    . High-definition CT Gemstone spectral imaging of the brain: initial results of selecting optimal monochromatic image for beam-hardening artifacts and image noise reduction. J Comput Assist Tomogr 2011;35:294–97 doi:10.1097/RCT.0b013e3182058d5c
    CrossRefPubMed
  32. 32.↵
    1. Wang Y,
    2. Qian B,
    3. Li B, et al
    . Metal artifacts reduction using monochromatic images from spectral CT: evaluation of pedicle screws in patients with scoliosis. Eur J Radiol 2013;82:e360–66 doi:10.1016/j.ejrad.2013.02.024 pmid:23518146
    CrossRefPubMed
  33. 33.↵
    1. Lydiatt WM,
    2. Patel SG,
    3. O’Sullivan B, et al
    . Head and neck cancers: major changes in the American Joint Committee on Cancer Eighth Edition Cancer Staging Manual. CA Cancer J Clin 2017;67:122–37 doi:10.3322/caac.21389 pmid:28128848
    CrossRefPubMed
  34. 34.↵
    1. Svanholm H,
    2. Starklint H,
    3. Gundersen HJ, et al
    . Reproducibility of histomorphologic diagnoses with special reference to the kappa statistic. APMIS 1989;97:689–98 doi:10.1111/j.1699-0463.1989.tb00464.x pmid:2669853
    CrossRefPubMedWeb of Science
  35. 35.↵
    1. Blatt S,
    2. Ziebart T,
    3. Krüger M, et al
    . Diagnosing oral squamous cell carcinoma: How much imaging do we really need? A review of the current literature. J Craniomaxillofac Surg 2016;44:538–49 doi:10.1016/j.jcms.2016.02.003 pmid:26976698
    CrossRefPubMed
  36. 36.↵
    1. Cha J,
    2. Kim HJ,
    3. Kim ST, et al
    . Dual-energy CT with virtual monochromatic images and metal artifact reduction software for reducing metallic dental artifacts. Acta Radiol 2017;58:1312–19 doi:10.1177/0284185117692174 pmid:28273739
    CrossRefPubMed
  37. 37.↵
    1. Laukamp KR,
    2. Zopfs D,
    3. Lennartz S, et al
    . Metal artifacts in patients with large dental implants and bridges: combination of metal artifact reduction algorithms and virtual monoenergetic images provides an approach to handle even strongest artifacts. Eur Radiol 2019;29:4228–38 doi:10.1007/s00330-018-5928-7 pmid:30649598
    CrossRefPubMed
  38. 38.↵
    1. Toso S,
    2. Laurent M,
    3. Lozeron ED, et al
    . Iterative algorithms for metal artifact reduction in children with orthopedic prostheses: preliminary results. Pediatr Radiol 2018;48:1884–90 doi:10.1007/s00247-018-4217-6 pmid:30056564
    CrossRefPubMed
  39. 39.↵
    1. Wellenberg RH,
    2. Boomsma MF,
    3. van Osch JA, et al
    . Computed tomography imaging of a hip prosthesis using iterative model-based reconstruction and orthopaedic metal artefact reduction: a quantitative analysis. J Comput Assist Tomogr 2016;40:971–78 doi:10.1097/RCT.0000000000000449 pmid:27331924
    CrossRefPubMed
  40. 40.↵
    1. Neroladaki A,
    2. Martin SP,
    3. Bagetakos I, et al
    . Metallic artifact reduction by evaluation of the additional value of iterative reconstruction algorithms in hip prosthesis computed tomography imaging. Medicine 2019;98:e14341 doi:10.1097/MD.0000000000014341 pmid:30732160
    CrossRefPubMed
  41. 41.↵
    1. Tsuchida Y,
    2. Takahashi H,
    3. Watanabe H, et al
    . Effects of number of metal restorations and mandibular position during computed tomography imaging on accuracy of maxillofacial models. J Prosthodont Res 2019;63:239–44 doi:10.1016/j.jpor.2018.12.006 pmid:30658907
    CrossRefPubMed
  42. 42.↵
    1. Motoyama S,
    2. Ito H,
    3. Sarai M, et al
    . Ultra-high-resolution computed tomography angiography for assessment of coronary artery stenosis. Circ J 2018;82:1844–51 doi:10.1253/circj.CJ-17-1281 pmid:29743388
    CrossRefPubMed
  43. 43.↵
    1. Faber J,
    2. Fonseca LM
    . How sample size influences research outcomes. Dental Press J Orthod 2014;19:27–29 doi:10.1590/2176-9451.19.4.027-029.ebo pmid:25279518
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 41 (11)
American Journal of Neuroradiology
Vol. 41, Issue 11
1 Nov 2020
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Diagnostic Value of Model-Based Iterative Reconstruction Combined with a Metal Artifact Reduction Algorithm during CT of the Oral Cavity
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Y. Kubo, K. Ito, M. Sone, H. Nagasawa, Y. Onishi, N. Umakoshi, T. Hasegawa, T. Akimoto, M. Kusumoto
Diagnostic Value of Model-Based Iterative Reconstruction Combined with a Metal Artifact Reduction Algorithm during CT of the Oral Cavity
American Journal of Neuroradiology Nov 2020, 41 (11) 2132-2138; DOI: 10.3174/ajnr.A6767

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Diagnostic Value of Model-Based Iterative Reconstruction Combined with a Metal Artifact Reduction Algorithm during CT of the Oral Cavity
Y. Kubo, K. Ito, M. Sone, H. Nagasawa, Y. Onishi, N. Umakoshi, T. Hasegawa, T. Akimoto, M. Kusumoto
American Journal of Neuroradiology Nov 2020, 41 (11) 2132-2138; DOI: 10.3174/ajnr.A6767
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref (14)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Advances in metal artifact reduction in CT images: A review of traditional and novel metal artifact reduction techniques
    Mark Selles, Jochen A.C. van Osch, Mario Maas, Martijn F. Boomsma, Ruud H.H. Wellenberg
    European Journal of Radiology 2024 170
  • Iterative Metal Artifact Reduction in Head and Neck CT Facilitates Tumor Visualization of Oral and Oropharyngeal Cancer Obscured by Artifacts From Dental Hardware
    Nadine Bayerl, Matthias Stefan May, Wolfgang Wuest, Jan-Peter Roth, Manuel Kramer, Christian Hofmann, Bernhard Schmidt, Michael Uder, Stephan Ellmann
    Academic Radiology 2023 30 12
  • Ultra-High-Resolution CT of the Head and Neck with Deep Learning Reconstruction—Assessment of Image Quality and Radiation Exposure and Intraindividual Comparison with Normal-Resolution CT
    Sebastian Altmann, Mario A. Abello Mercado, Felix A. Ucar, Andrea Kronfeld, Bilal Al-Nawas, Anirban Mukhopadhyay, Christian Booz, Marc A. Brockmann, Ahmed E. Othman
    Diagnostics 2023 13 9
  • A projection-domain iterative algorithm for metal artifact reduction by minimizing the total-variation norm and the negative-pixel energy
    Gengsheng L. Zeng
    Visual Computing for Industry, Biomedicine, and Art 2022 5 1
  • Reconstruction Algorithm-Based CT Imaging for the Diagnosis of Hepatic Ascites
    Huitao Zhang, Wenhao Lv, Haofeng Diao, Li Shang, Ahmed Faeq Hussein
    Computational and Mathematical Methods in Medicine 2022 2022
  • Deep Learning Reconstruction Plus Single-Energy Metal Artifact Reduction for Supra Hyoid Neck CT in Patients With Dental Metals
    Masumi Mizuki, Koichiro Yasaka, Rintaro Miyo, Yuta Ohtake, Akiyoshi Hamada, Reina Hosoi, Osamu Abe
    Canadian Association of Radiologists Journal 2024 75 1
  • Effectiveness of Radiological Technologists in Reporting Computed Tomography Findings in After-hour Emergencies
    Norikazu Koori, Yusuke Yoshida, Akari Noda, Akiko Maeda, Fuminari Nishikawa, Mayumi Yasui, Kazuma Kurata, Yudai Suzuki, Hiroki Kamekawa, Hiroko Nishikawa
    Japanese Journal of Radiological Technology 2022 78 6
  • A comprehensive dual energy method for CBCT metal artifact reduction
    Weiwei Ge, Zihao Liu, Hehe Cui, Xiaogang Yuan, Yidong Yang
    Physics in Medicine & Biology 2025 70 1
  • CT Image Features Based on the Reconstruction Algorithm for Continuous Blood Purification Combined with Nursing Intervention in the Treatment of Severe Acute Pancreatitis
    Yanyan Liu, Mingli Gu, Liping Liu, Lunmeng Cui, Aimin Xing, M Pallikonda Rajasekaran
    Contrast Media & Molecular Imaging 2022 2022 1
  • Efficacy of a radiographic film holder adapter in generating radiographs of dental implants with improved geometric accuracy and sharpness
    Eduarda Alberti Bonadiman, Eduarda Lins Fachetti, Francisco Haiter-Neto, Teresa Cristina Rangel Pereira, Sergio Lins de-Azevedo-Vaz
    The Journal of Prosthetic Dentistry 2024 132 2

More in this TOC Section

  • Chondrosarcoma vs Synovial Chondromatosis: Imaging
  • WHO Classification Update: Nasal&Skull Base Tumors
  • Peritumoral Signal in Vestibular Schwannomas
Show more Head & Neck

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire