Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticlePediatrics
Open Access

Topological Alterations of the Structural Brain Connectivity Network in Children with Juvenile Neuronal Ceroid Lipofuscinosis

T. Roine, U. Roine, A. Tokola, M.H. Balk, M. Mannerkoski, L. Åberg, T. Lönnqvist and T. Autti
American Journal of Neuroradiology December 2019, 40 (12) 2146-2153; DOI: https://doi.org/10.3174/ajnr.A6306
T. Roine
bRadiology, Child Psychiatry (M.M.)
dTurku Brain and Mind Center (T.R.), University of Turku, Turku, Finland
eDepartment of Neuroscience and Biomedical Engineering (T.R.), Aalto University School of Science, Espoo, Finland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for T. Roine
U. Roine
bRadiology, Child Psychiatry (M.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for U. Roine
A. Tokola
bRadiology, Child Psychiatry (M.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Tokola
M.H. Balk
bRadiology, Child Psychiatry (M.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M.H. Balk
M. Mannerkoski
bRadiology, Child Psychiatry (M.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Mannerkoski
L. Åberg
cDepartment of Psychiatry (L.Å.), University of Helsinki and Helsinki University Hospital, Helsinki, Finland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for L. Åberg
T. Lönnqvist
fDepartment of Child Neurology (T.L.), Children's Hospital, University of Helsinki and Helsinki University, Helsinki, Finland.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for T. Lönnqvist
T. Autti
bRadiology, Child Psychiatry (M.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for T. Autti
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Tournier JD,
    2. Mori S,
    3. Leemans A.
    Diffusion tensor imaging and beyond. Magn Reson Med 2011;65:1532–56 doi:10.1002/mrm.22924 pmid:21469191
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. Smith SM,
    2. Jenkinson M,
    3. Johansen-Berg H.
    Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 2006;31:1487–505 doi:10.1016/j.neuroimage.2006.02.024 pmid:16624579
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Jones DK,
    2. Knösche TR,
    3. Turner R.
    White matter integrity, fiber count, and other fallacies: The do’s and don’ts of diffusion MRI. Neuroimage 2013;73:239–54 doi:10.1016/j.neuroimage.2012.06.081 pmid:22846632
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Bach M,
    2. Laun FB,
    3. Leemans A, et al
    . Methodological considerations on tract-based spatial statistics (TBSS). Neuroimage 2014;100:358–69 doi:10.1016/j.neuroimage.2014.06.021 pmid:24945661
    CrossRefPubMed
  5. 5.↵
    1. Hagmann P,
    2. Cammoun L,
    3. Gigandet X, et al
    . Mapping the structural core of human cerebral cortex. PLoS Biol 2008;6:e159 doi:10.1371/journal.pbio.0060159
    CrossRefPubMed
  6. 6.↵
    1. Bullmore ET,
    2. Sporns O.
    Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 2009;10:186–98 doi:10.1038/nrn2575 pmid:19190637
    CrossRefPubMedWeb of Science
  7. 7.↵
    1. Jeurissen B,
    2. Leemans A,
    3. Jones DK, et al
    . Probabilistic fiber tracking using the residual bootstrap with constrained spherical deconvolution. Hum Brain Mapp 2011;32:461–79 doi:10.1002/hbm.21032 pmid:21319270
    CrossRefPubMedWeb of Science
  8. 8.↵
    1. Fischl B,
    2. van der Kouwe A,
    3. Destrieux C, et al
    . Automatically parcellating the human cerebral cortex. Cereb Cortex 2004;14:11–22 doi:10.1093/cercor/bhg087 pmid:14654453
    CrossRefPubMedWeb of Science
  9. 9.↵
    1. Rubinov M,
    2. Sporns O.
    Complex network measures of brain connectivity: uses and interpretations. Neuroimage 2010;52:1059–69 doi:10.1016/j.neuroimage.2009.10.003 pmid:19819337
    CrossRefPubMedWeb of Science
  10. 10.↵
    1. Roine T,
    2. Jeurissen B,
    3. Perrone D, et al
    . Reproducibility and intercorrelation of graph theoretical measures in structural brain connectivity networks. Med Image Anal 2019;52:56–67 doi:10.1016/j.media.2018.10.009 pmid:30471463
    CrossRefPubMed
  11. 11.↵
    1. van den Heuvel MP,
    2. Mandl RCW,
    3. Stam CJ, et al
    . Aberrant frontal and temporal complex network structure in schizophrenia: A graph theoretical analysis. J Neurosci 2010;30:15915–26 doi:10.1523/JNEUROSCI.2874-10.2010 pmid:21106830
    Abstract/FREE Full Text
  12. 12.↵
    1. Roine U,
    2. Roine T,
    3. Salmi J, et al
    . Abnormal wiring of the connectome in adults with high-functioning autism spectrum disorder. Mol Autism 2015;6:65. doi:10.1186/s13229-015-0058-4 pmid:26677408
    CrossRefPubMed
  13. 13.↵
    1. Lo CY,
    2. Wang PN,
    3. Chou KH, et al
    . Diffusion tensor tractography reveals abnormal topological organization in structural cortical networks in Alzheimer’s disease. J Neurosci 2010;30:16876–85 doi:10.1523/JNEUROSCI.4136-10.2010 pmid:21159959
    Abstract/FREE Full Text
  14. 14.↵
    1. Boustany RM.
    Lysosomal storage diseases—the horizon expands. Nat Rev Neurol 2013;9:583 doi:10.1038/nrneurol.2013.163 pmid:23938739
    CrossRefPubMed
  15. 15.↵
    1. Santavuori P,
    2. Lauronen L,
    3. Kirveskari K, et al
    . Neuronal ceroid lipofuscinoses in childhood. Suppl Clin Neurophysiol 2000;53:443–51 doi:10.1016/S1567-424X(09)70193-X pmid:12741032
    CrossRefPubMed
  16. 16.↵
    1. Collins J,
    2. Holder GE,
    3. Herbert H, et al
    . Batten disease: features to facilitate early diagnosis. Br J Ophthalmol 2006;90:1119–24 doi:10.1136/bjo.2006.091637 pmid:16754648
    Abstract/FREE Full Text
  17. 17.↵
    1. Spalton DJ,
    2. Taylor DS,
    3. Sanders MD.
    Batten’s disease: an ophthalmological assessment of 26 patients. Br J Ophthalmol 1980;64:726–32 doi:10.1136/bjo.64.10.726 pmid:7426545
    Abstract/FREE Full Text
  18. 18.↵
    1. Jalanko A,
    2. Braulke T.
    Neuronal ceroid lipofuscinoses. Biochim Biophys Acta 2009;1793:697–709 doi:10.1016/j.bbamcr.2008.11.004 pmid:19084560
    CrossRefPubMedWeb of Science
  19. 19.↵
    1. Autti T,
    2. Raininko R,
    3. Vanhanen SL.
    MRI of neuronal ceroid lipofuscinosis: I. Cranial MRI of 30 patients with juvenile neuronal ceroid lipofuscinosis. Neuroradiology 1996;38:476–82 doi:10.1007/bf00607283 pmid:8837098
    CrossRefPubMedWeb of Science
  20. 20.↵
    1. Tokola AM,
    2. Salli EK,
    3. Åberg LE, et al
    . Hippocampal volumes in juvenile neuronal ceroid lipofuscinosis: a longitudinal magnetic resonance imaging study. Pediatr Neurol 2014;50:158–63 doi:10.1016/j.pediatrneurol.2013.10.013 pmid:24411222
    CrossRefPubMed
  21. 21.↵
    1. Autti T,
    2. Joensuu R,
    3. Åberg L.
    Decreased T2 signal in the thalami may be a sign of lysosomal storage disease. Neuroradiology 2007;49:571–78 doi:10.1007/s00234-007-0220-6 pmid:17334752
    CrossRefPubMedWeb of Science
  22. 22.↵
    1. Autti T,
    2. Raininko R,
    3. Santavuori P, et al
    . MRI of neuronal ceroid lipofuscinosis. II. Postmortem MRI and histopathological study of the brain in 16 cases of neuronal ceroid lipofuscinosis of juvenile or late infantile type. Neuroradiology 1997;39:371–77 doi:10.1007/s002340050427 pmid:9189886
    CrossRefPubMedWeb of Science
  23. 23.↵
    1. Roine U,
    2. Roine TJ,
    3. Hakkarainen A, et al
    . Global and widespread local white matter abnormalities in juvenile neuronal ceroid lipofuscinosis. AJNR Am J Neuroradiol 2018;39:1349–54 doi:10.3174/ajnr.A5687 pmid:29853519
    Abstract/FREE Full Text
  24. 24.↵
    1. Tournier J-D,
    2. Calamante F,
    3. Connelly A.
    Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. Neuroimage 2007;35:1459–72 doi:10.1016/j.neuroimage.2007.02.016 pmid:17379540
    CrossRefPubMedWeb of Science
  25. 25.↵
    1. Basser PJ,
    2. Mattiello J,
    3. LeBihan D.
    MR diffusion tensor spectroscopy and imaging. Biophys J 1994;66:259–67 doi:10.1016/S0006-3495(94)80775-1 pmid:8130344
    CrossRefPubMedWeb of Science
  26. 26.↵
    1. Jeurissen B,
    2. Leemans A,
    3. Tournier JD, et al
    . Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging. Hum Brain Mapp 2013;34:2747–66 doi:10.1002/hbm.22099 pmid:22611035
    CrossRefPubMed
  27. 27.↵
    Movement Disorder Society Task Force on Rating Scales for Parkinson’s Disease. The Unified Parkinson’s disease rating scale (UPDRS): status and recommendations. Mov Disord 2003;18:738–50 doi:10.1002/mds.10473 pmid:12815652
    CrossRefPubMedWeb of Science
  28. 28.↵
    1. Leemans A,
    2. Jones DK.
    The B-matrix must be rotated when correcting for subject motion in DTI data. Magn Reson Med 2009;61:1336–49 doi:10.1002/mrm.21890 pmid:19319973
    CrossRefPubMedWeb of Science
  29. 29.↵
    1. Jeurissen B,
    2. Sijbers J, et al
    1. Leemans A
    , Jeurissen B, Sijbers J, et al. ExploreDTI: a graphical toolbox for processing, analyzing, and visualizing diffusion MR data. Proc 17th Sci Meet Int Soc Magn Reson Med 2009;17:3537
  30. 30.↵
    1. Irfanoglu MO,
    2. Walker L,
    3. Sarlls J, et al
    . Effects of image distortions originating from susceptibility variations and concomitant fields on diffusion MRI tractography results. Neuroimage 2012;61:275–88 doi:10.1016/j.neuroimage.2012.02.054 pmid:22401760
    CrossRefPubMed
  31. 31.↵
    1. Destrieux C,
    2. Fischl B,
    3. Dale A, et al
    . Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage 2010;53:1–15 doi:10.1016/j.neuroimage.2010.06.010 pmid:20547229
    CrossRefPubMedWeb of Science
  32. 32.↵
    1. Tournier JD,
    2. Calamante F,
    3. Connelly A.
    MRtrix: Diffusion tractography in crossing fiber regions. Int J Imaging Syst Technol 2012;22:53–66 doi:10.1002/ima.22005
    CrossRefWeb of Science
  33. 33.↵
    1. Civier O,
    2. Smith RE,
    3. Yeh C, et al
    . Is removal of weak connections necessary for graph-theoretical analysis of dense weighted structural connectomes from diffusion MRI? Neuroimage 2019;194:68–81 doi:10.1016/j.neuroimage.2019.02.039 pmid:30844506
    CrossRefPubMed
  34. 34.↵
    1. Saramäki J,
    2. Kivelä M,
    3. Onnela JP, et al
    . Generalizations of the clustering coefficient to weighted complex networks. Phys Rev E Stat Nonlinear Soft Matter Phys 2007;75(Pt 2):027105
  35. 35.↵
    1. Watts DJ,
    2. Strogatz SH.
    Collective dynamics of “small-world” networks. Nature 1998;393:440–42 doi:10.1038/30918 pmid:9623998
    CrossRefPubMedWeb of Science
  36. 36.↵
    1. Latora V,
    2. Marchiori M.
    Efficient behavior of small-world networks. Phys Rev Lett 2001;87:198701 doi:10.1103/PhysRevLett.87.198701 pmid:11690461
    CrossRefPubMed
  37. 37.↵
    1. Freeman LC.
    Centrality in social networks conceptual clarification. Soc Netw 1978;1:215–39 doi:10.1016/0378-8733(78)90021-7
    CrossRef
  38. 38.↵
    1. Shapleske J,
    2. Rossell SL,
    3. Woodruff PW, et al
    . The planum temporale: a systematic, quantitative review of its structural, functional and clinical significance. Brain Res Brain Res Rev 1999;29:26–49 doi:10.1016/S0165-0173(98)00047-2 pmid:9974150
    CrossRefPubMedWeb of Science
  39. 39.↵
    1. Binder JR,
    2. Frost JA,
    3. Hammeke TA, et al
    . Function of the left planum temporale in auditory and linguistic processing. Brain 1996;119:1239–47 doi:10.1093/brain/119.4.1239 pmid:8813286
    CrossRefPubMedWeb of Science
  40. 40.↵
    1. Stoeckel C,
    2. Gough PM,
    3. Watkins KE, et al
    . Supramarginal gyrus involvement in visual word recognition. Cortex 2009;45:1091–96 doi:10.1016/j.cortex.2008.12.004 pmid:19232583
    CrossRefPubMedWeb of Science
  41. 41.↵
    1. Rushworth MF,
    2. Behrens TE,
    3. Johansen-Berg H.
    Connection patterns distinguish 3 regions of human parietal cortex. Cereb Cortex 2006;16:1418–30 doi:10.1093/cercor/bhj079 pmid:16306320
    CrossRefPubMedWeb of Science
  42. 42.↵
    1. Déjerine J.
    Sur un cas de cécité verbale avec agraphie suivi d’autopsie [On a case of verbal blindness with agraphia, followed by autopsy]. Mémoires Société Biol 1891;3:197–201.
  43. 43.↵
    1. Devlin JT,
    2. Matthews PM,
    3. Rushworth M.
    Semantic processing in the left inferior prefrontal cortex: a combined functional magnetic resonance imaging and transcranial magnetic stimulation study. J Cogn Neurosci 2003;15:71–84 doi:10.1162/089892903321107837 pmid:12590844
    CrossRefPubMedWeb of Science
  44. 44.↵
    1. Catani M,
    2. Jones DK,
    3. Ffytche DH.
    Perisylvian language networks of the human brain. Ann Neurol 2005;57:8–16 doi:10.1002/ana.20319 pmid:15597383
    CrossRefPubMedWeb of Science
  45. 45.↵
    1. Poldrack RA,
    2. Wagner AD,
    3. Prull MW, et al
    . Functional specialization for semantic and phonological processing in the left inferior prefrontal cortex 1. Neuroimage 1999;35:15–35 doi:10.1006/nimg.1999.0441
    CrossRef
  46. 46.↵
    1. Hartwigsen G,
    2. Baumgaertner A,
    3. Price CJ, et al
    . Phonological decisions require both the left and right supramarginal gyri. Proc Natl Acad Sci U S A 2010;107:16494–99 doi:10.1073/pnas.1008121107 pmid:20807747
    Abstract/FREE Full Text
  47. 47.↵
    1. Arnett PA,
    2. Swanson SJ,
    3. Hammeke TA.
    Conduction aphasia in multiple sclerosis: a case report with MRI findings. Neurology 1996;47:576–78 doi:10.1212/wnl.47.2.576 pmid:8757043
    Abstract/FREE Full Text
  48. 48.↵
    1. Kertesz A,
    2. Lau WK,
    3. Polk M.
    The structural determinants of recovery in Wernicke’s aphasia. Brain Lang 1993;44:153–64 doi:10.1006/brln.1993.1010 pmid:8428309
    CrossRefPubMedWeb of Science
  49. 49.↵
    1. Adam M,
    2. Ardinger H,
    3. Pagon R, et al.
    1. Mole SE,
    2. Williams RE
    . Neuronal ceroid-lipofuscinoses. In: Adam M, Ardinger H, Pagon R, et al. eds. GeneReviews. Seattle: University of Washington, 2001
  50. 50.↵
    1. Patterson K,
    2. Brown WD,
    3. Wise R, et al
    . The cortical localization of the lexicons: positron emission tomography evidence. Brain 1992;115:1769–82 doi:10.1093/brain/115.6.1769 pmid:1486460
    CrossRefPubMedWeb of Science
  51. 51.↵
    1. Price CJ,
    2. Wise RJS,
    3. Watson JDG, et al
    . Brain activity during reading. The effects of exposure duration and task. Brain 1994;117(Pt 6):1255–69 doi:10.1093/brain/117.6.1255 pmid:7820564
    CrossRefPubMedWeb of Science
  52. 52.↵
    1. Bookheimer SY,
    2. Zeffiro TA,
    3. Blaxton T, et al
    . Regional cerebral blood flow during object naming and word reading. Hum Brain Mapp 1995;3:93–106 doi:10.1002/hbm.460030206
    CrossRefWeb of Science
  53. 53.↵
    1. Machielsen WC,
    2. Rombouts SA,
    3. Barkhof F, et al
    . FMRI of visual encoding: reproducibility of activation. Hum Brain Mapp 2000;9:156–64 doi:10.1002/(SICI)1097-0193(200003)9:3<156::AID-HBM4>3.0.CO;2-Q pmid:10739366
    CrossRefPubMedWeb of Science
  54. 54.↵
    1. Bogousslavsky J,
    2. Miklossy J,
    3. Deruaz J-P, et al
    . Lingual and fusiform gyri in visual processing: a clinico-pathologic study of superior altitudinal hemianopia. J Neurol Neurosurg Psychiatry 1987;50:607–14 doi:10.1136/jnnp.50.5.607 pmid:3585386
    Abstract/FREE Full Text
  55. 55.↵
    1. Brunet E,
    2. Sarfati Y,
    3. Hardy-Baylé MC, et al
    . A PET investigation of the attribution of intentions with a nonverbal task. Neuroimage 2000;11:157–66 doi:10.1006/nimg.1999.0525 pmid:10679187
    CrossRefPubMedWeb of Science
  56. 56.↵
    1. Heath S,
    2. McMahon KL,
    3. Nickels L, et al
    . Neural mechanisms underlying the facilitation of naming in aphasia using a semantic task: an fMRI study. BMC Neurosci 2012;13:98 doi:10.1186/1471-2202-13-98 pmid:22882806
    CrossRefPubMed
  57. 57.↵
    1. Cho S,
    2. Metcalfe AWS,
    3. Young CB, et al
    . Hippocampal – prefrontal engagement and dynamic causal interactions in the maturation of children’s fact retrieval. J Cogn Neurosci 2012;24:1849–66 doi:10.1162/jocn_a_00246 pmid:22621262
    CrossRefPubMedWeb of Science
  58. 58.↵
    1. Isenberg N,
    2. Silbersweig D,
    3. Engelien A, et al
    . Linguistic threat activates the human amygdala. Proc Natl Acad Sci U S A 1999;96:10456–59 doi:10.1073/pnas.96.18.10456 pmid:10468630
    Abstract/FREE Full Text
  59. 59.↵
    1. Damasio A,
    2. Yamada T,
    3. Damasio H, et al
    . Central achromatopsia: behavioral, anatomic, and physiologic aspects. Neurology 1980;30:1064. doi:10.1212/wnl.30.10.1064 pmid:6968419
    Abstract/FREE Full Text
  60. 60.↵
    1. Meadows JC.
    Disturbed perception of colours associated with localized cerebral lesions. Brain 1974;97:615–32 doi:10.1093/brain/97.1.615 pmid:4547992
    CrossRefPubMedWeb of Science
  61. 61.↵
    1. Kanwisher N.
    Domain specificity in face perception. Nat Neurosci 2000;3:759–63 doi:10.1038/77664 pmid:10903567
    CrossRefPubMedWeb of Science
  62. 62.↵
    1. Meadows JC.
    The anatomical basis of prosopagnosia. J Neurol Neurosurg Psychiatry 1974;37:489–501 doi:10.1136/jnnp.37.5.489 pmid:4209556
    Abstract/FREE Full Text
  63. 63.↵
    1. Damasio AR,
    2. Damasio H,
    3. Van Hoesen GW.
    Prosopagnosia: anatomic basis and behavioral mechanisms. Neurology 1982;32:331 doi:10.1212/wnl.32.4.331 pmid:7199655
    Abstract/FREE Full Text
  64. 64.↵
    1. Barton JJS,
    2. Press DZ,
    3. Keenan JP, et al
    . Lesions of the fusiform face area impair perception of facial configuration in prosopagnosia. Neurology 2002;58:71–78 doi:10.1212/wnl.58.1.71 pmid:11781408
    Abstract/FREE Full Text
  65. 65.↵
    1. Takahashi N,
    2. Kawamura M.
    Pure topographical disorientation - the anatomical basis of landmark agnosia. Cortex 2002;38:717–25 doi:10.1016/s0010-9452(08)70039-x pmid:12507041
    CrossRefPubMedWeb of Science
  66. 66.↵
    1. Tokola AM,
    2. Åberg LE,
    3. Autti TH.
    Brain MRI findings in aspartylglucosaminuria. J Neuroradiol 2015;42:345–57 doi:10.1016/j.neurad.2015.03.003 pmid:26026191
    CrossRefPubMed
  67. 67.↵
    1. Autti T,
    2. Hämäläinen J,
    3. Åberg L, et al
    . Thalami and corona radiata in juvenile NCL (CLN3): A voxel-based morphometric study. Eur J Neurol 2007;14:447–50 doi:10.1111/j.1468-1331.2007.01692.x pmid:17388996
    CrossRefPubMed
  68. 68.↵
    1. Tournier JD,
    2. Calamante F,
    3. Connelly A.
    Determination of the appropriate b value and number of gradient directions for high-angular-resolution diffusion-weighted imaging. NMR Biomed 2013;26:1775–86 doi:10.1002/nbm.3017 pmid:24038308
    CrossRefPubMedWeb of Science
  69. 69.↵
    1. Farquharson S,
    2. Tournier JD,
    3. Calamante F, et al
    . White matter fiber tractography: why we need to move beyond DTI. J Neurosurg 2013;118:1367–77 doi:10.3171/2013.2.JNS121294 pmid:23540269
    CrossRefPubMedWeb of Science
  70. 70.↵
    1. Zhang H,
    2. Schneider T,
    3. Wheeler-Kingshott CA, et al
    . NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 2012;61:1000–16 doi:10.1016/j.neuroimage.2012.03.072 pmid:22484410
    CrossRefPubMed
  71. 71.↵
    1. Jeurissen B,
    2. Tournier JD,
    3. Dhollander T, et al
    . Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data. Neuroimage 2014;103:411–26 doi:10.1016/j.neuroimage.2014.07.061 pmid:25109526
    CrossRefPubMed
  72. 72.↵
    1. Roine T,
    2. Jeurissen B,
    3. Perrone D, et al
    . Informed constrained spherical deconvolution (iCSD.). Med Image Anal 2015;24:269–81
    CrossRef
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 40 (12)
American Journal of Neuroradiology
Vol. 40, Issue 12
1 Dec 2019
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Topological Alterations of the Structural Brain Connectivity Network in Children with Juvenile Neuronal Ceroid Lipofuscinosis
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
T. Roine, U. Roine, A. Tokola, M.H. Balk, M. Mannerkoski, L. Åberg, T. Lönnqvist, T. Autti
Topological Alterations of the Structural Brain Connectivity Network in Children with Juvenile Neuronal Ceroid Lipofuscinosis
American Journal of Neuroradiology Dec 2019, 40 (12) 2146-2153; DOI: 10.3174/ajnr.A6306

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Topological Alterations of the Structural Brain Connectivity Network in Children with Juvenile Neuronal Ceroid Lipofuscinosis
T. Roine, U. Roine, A. Tokola, M.H. Balk, M. Mannerkoski, L. Åberg, T. Lönnqvist, T. Autti
American Journal of Neuroradiology Dec 2019, 40 (12) 2146-2153; DOI: 10.3174/ajnr.A6306
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Acknowledgment
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • Topological Structural Brain Connectivity Alterations in Aspartylglucosaminuria: A Case-Control Study
  • Crossref (3)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Neuronal Ceroid Lipofuscinosis: The Multifaceted Approach to the Clinical Issues, an Overview
    Alessandro Simonati, Ruth E. Williams
    Frontiers in Neurology 2022 13
  • Top-down and bottom-up propagation of disease in the neuronal ceroid lipofuscinoses
    John R. Ostergaard, Hemanth R. Nelvagal, Jonathan D. Cooper
    Frontiers in Neurology 2022 13
  • Topological Structural Brain Connectivity Alterations in Aspartylglucosaminuria: A Case-Control Study
    U. Roine, A.M. Tokola, T. Autti, T. Roine
    American Journal of Neuroradiology 2023 44 1

More in this TOC Section

Pediatrics

  • SyMRI & MR Fingerprinting in Brainstem Myelination
  • Comparison of Image Quality and Radiation Dose in Pediatric Temporal Bone CT Using Photon-Counting Detector CT and Energy-Integrating Detector CT
  • Dual-Layer Detector CT for PEDS Image Quality
Show more Pediatrics

Functional

  • Kurtosis and Epileptogenic Tubers: A Pilot Study
  • Glutaric Aciduria Type 1: DK vs. Conventional MRI
  • Multiparametric MRI in PEDS Pontine Glioma
Show more Functional

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire