Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • Advancing NeuroMRI with High-Relaxivity Contrast Agents
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • Advancing NeuroMRI with High-Relaxivity Contrast Agents
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates


Improved Turnaround Times | Median time to first decision: 12 days

Research ArticleFunctional

Breath-Hold Blood Oxygen Level–Dependent MRI: A Tool for the Assessment of Cerebrovascular Reserve in Children with Moyamoya Disease

N. Dlamini, P. Shah-Basak, J. Leung, F. Kirkham, M. Shroff, A. Kassner, A. Robertson, P. Dirks, R. Westmacott, G. deVeber and W. Logan
American Journal of Neuroradiology September 2018, 39 (9) 1717-1723; DOI: https://doi.org/10.3174/ajnr.A5739
N. Dlamini
aFrom the Division of Neurology (N.D., G.d.V., W.L.)
bNeurosciences and Mental Health Program (N.D.)
cChild Health Evaluative Sciences Program (N.D., A.R., G.d.V.)
hInstitute of Medical Science (N.D., G.d.V.)
kDevelopmental Neurosciences (N.D., F.K.), University College London, Great Ormond Street Institute of Child Health, London, UK.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for N. Dlamini
P. Shah-Basak
eDiagnostic Imaging (P.S.-B., M.S.)
jRotman Research Institute (P.S.-B.), Baycrest, Toronto, Ontario, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for P. Shah-Basak
J. Leung
dTranslational Medicine (J.L., A.K.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J. Leung
F. Kirkham
kDevelopmental Neurosciences (N.D., F.K.), University College London, Great Ormond Street Institute of Child Health, London, UK.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for F. Kirkham
M. Shroff
eDiagnostic Imaging (P.S.-B., M.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Shroff
A. Kassner
dTranslational Medicine (J.L., A.K.)
iDepartment of Medical Imaging (A.K.), University of Toronto, Toronto, Ontario, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Kassner
A. Robertson
cChild Health Evaluative Sciences Program (N.D., A.R., G.d.V.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Robertson
P. Dirks
fDepartment of Neurosurgery (P.D.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for P. Dirks
R. Westmacott
gDepartment of Neuropsychology (R.W.), The Hospital for Sick Children, Toronto, Ontario, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for R. Westmacott
G. deVeber
aFrom the Division of Neurology (N.D., G.d.V., W.L.)
cChild Health Evaluative Sciences Program (N.D., A.R., G.d.V.)
hInstitute of Medical Science (N.D., G.d.V.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for G. deVeber
W. Logan
aFrom the Division of Neurology (N.D., G.d.V., W.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for W. Logan
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Lynch JK,
    2. Hirtz DG,
    3. DeVeber G, et al
    . Report of the National Institute of Neurological Disorders and Stroke workshop on perinatal and childhood stroke. Pediatrics 2002;109:116–23 doi:10.1542/peds.109.1.116 pmid:11773550
    Abstract/FREE Full Text
  2. 2.↵
    1. Fullerton HJ,
    2. Wu YW,
    3. Zhao S, et al
    . Risk of stroke in children: ethnic and gender disparities. Neurology 2003;61:189–94 doi:10.1212/01.WNL.0000078894.79866.95 pmid:12874397
    Abstract/FREE Full Text
  3. 3.↵
    1. Fullerton HJ,
    2. Wu YW,
    3. Sidney S, et al
    . Risk of recurrent childhood arterial ischemic stroke in a population-based cohort: the importance of cerebrovascular imaging. Pediatrics 2007;119:495–501 doi:10.1542/peds.2006-2791 pmid:17332202
    Abstract/FREE Full Text
  4. 4.↵
    1. Mackay MT,
    2. Wiznitzer M,
    3. Benedict SL, et al
    ; International Pediatric Stroke Study Group. Arterial ischemic stroke risk factors: the International Pediatric Stroke Study. Ann Neurol 2011;69:130–40 doi:10.1002/ana.22224 pmid:21280083
    CrossRefPubMedWeb of Science
  5. 5.↵
    1. Wintermark M,
    2. Hills NK,
    3. deVeber GA, et al
    ; VIPS Investigators. Arteriopathy diagnosis in childhood arterial ischemic stroke: results of the vascular effects of infection in pediatric stroke study. Stroke 2014;45:3597–605 doi:10.1161/STROKEAHA.114.007404 pmid:25388419
    Abstract/FREE Full Text
  6. 6.↵
    1. Ganesan V,
    2. Prengler M,
    3. Wade A, et al
    . Clinical and radiological recurrence after childhood arterial ischemic stroke. Circulation 2006;114:2170–77 doi:10.1161/CIRCULATIONAHA.105.583690 pmid:17075014
    Abstract/FREE Full Text
  7. 7.↵
    1. Braun KP,
    2. Bulder MM,
    3. Chabrier S, et al
    . The course and outcome of unilateral intracranial arteriopathy in 79 children with ischaemic stroke. Brain 2009;132:544–57 pmid:19039009
    CrossRefPubMedWeb of Science
  8. 8.↵
    1. Amlie-Lefond C,
    2. Bernard TJ,
    3. Sebire G, et al
    ; International Pediatric Stroke Study Group. Predictors of cerebral arteriopathy in children with arterial ischemic stroke: results of the International Pediatric Stroke Study. Circulation 2009;119:1417–23 doi:10.1161/CIRCULATIONAHA.108.806307 pmid:19255344
    Abstract/FREE Full Text
  9. 9.↵
    1. Dobson SR,
    2. Holden KR,
    3. Nietert PJ, et al
    . Moyamoya syndrome in childhood sickle cell disease: a predictive factor for recurrent cerebrovascular events. Blood 2002;99:3144–50 doi:10.1182/blood.V99.9.3144 pmid:11964276
    Abstract/FREE Full Text
  10. 10.↵
    1. Rafay MF,
    2. Armstrong D,
    3. Dirks P, et al
    . Patterns of cerebral ischemia in children with moyamoya. Pediatr Neurol 2015;52:65–72 doi:10.1016/j.pediatrneurol.2014.10.007 pmid:25459363
    CrossRefPubMed
  11. 11.↵
    1. Guey S,
    2. Tournier-Lasserve E,
    3. Hervé D, et al
    . Moyamoya disease and syndromes: from genetics to clinical management. Appl Clin Genet 2015;8:49–68 doi:10.2147/TACG.S42772 pmid:25733922
    CrossRefPubMed
  12. 12.↵
    1. Sobczyk O,
    2. Battisti-Charbonney A,
    3. Fierstra J, et al
    . A conceptual model for CO2-induced redistribution of cerebral blood flow with experimental confirmation using BOLD MRI. Neuroimage 2014;92:56–68 doi:10.1016/j.neuroimage.2014.01.051 pmid:24508647
    CrossRefPubMed
  13. 13.↵
    1. Gupta A,
    2. Chazen JL,
    3. Hartman M, et al
    . Cerebrovascular reserve and stroke risk in patients with carotid stenosis or occlusion: a systematic review and meta-analysis. Stroke 2012;43:2884–91 doi:10.1161/STROKEAHA.112.663716 pmid:23091119
    Abstract/FREE Full Text
  14. 14.↵
    1. Conklin J,
    2. Fierstra J,
    3. Crawley AP, et al
    . Impaired cerebrovascular reactivity with steal phenomenon is associated with increased diffusion in white matter of patients with Moyamoya disease. Stroke 2010;41:1610–16 doi:10.1161/STROKEAHA.110.579540 pmid:20576954
    Abstract/FREE Full Text
  15. 15.↵
    1. Reinhard M,
    2. Schwarzer G,
    3. Briel M, et al
    . Cerebrovascular reactivity predicts stroke in high-grade carotid artery disease. Neurology 2014;83:1424–31 doi:10.1212/WNL.0000000000000888 pmid:25217057
    Abstract/FREE Full Text
  16. 16.↵
    1. Lee M,
    2. Zaharchuk G,
    3. Guzman R, et al
    . Quantitative hemodynamic studies in moyamoya disease: a review. Neurosurg Focus 2009;26:E5 doi:10.3171/2009.1.FOCUS08300 pmid:19335131
    CrossRefPubMed
  17. 17.↵
    1. Slessarev M,
    2. Han J,
    3. Mardimae A, et al
    . Prospective targeting and control of end-tidal CO2 and O2 concentrations. J Physiol 2007;581:1207–19 doi:10.1113/jphysiol.2007.129395 pmid:17446225
    CrossRefPubMedWeb of Science
  18. 18.↵
    1. Kassner A,
    2. Winter JD,
    3. Poublanc J, et al
    . Blood-oxygen level dependent MRI measures of cerebrovascular reactivity using a controlled respiratory challenge: reproducibility and gender differences. J Magn Reson Imaging 2010;31:298–304 doi:10.1002/jmri.22044 pmid:20099341
    CrossRefPubMedWeb of Science
  19. 19.↵
    1. Heyn C,
    2. Poublanc J,
    3. Crawley A, et al
    . Quantification of cerebrovascular reactivity by blood oxygen level-dependent MR imaging and correlation with conventional angiography in patients with Moyamoya disease. AJNR Am J Neuroradiol 2010;31:862–67 doi:10.3174/ajnr.A1922 pmid:20075092
    Abstract/FREE Full Text
  20. 20.↵
    1. Han JS,
    2. Mikulis DJ,
    3. Mardimae A, et al
    . Measurement of cerebrovascular reactivity in pediatric patients with cerebral vasculopathy using blood oxygen level-dependent MRI. Stroke 2011;42:1261–69 doi:10.1161/STROKEAHA.110.603225 pmid:21493907
    Abstract/FREE Full Text
  21. 21.↵
    1. Leung J,
    2. Kim JA,
    3. Kassner A
    . Reproducibility of cerebrovascular reactivity measures in children using BOLD MRI. J Magn Reson Imaging 2016;43:1191–95 doi:10.1002/jmri.25063 pmid:26435493
    CrossRefPubMed
  22. 22.↵
    1. Bright MG,
    2. Murphy K
    . Reliable quantification of BOLD fMRI cerebrovascular reactivity despite poor breath-hold performance. Neuroimage 2013;83:559–68 doi:10.1016/j.neuroimage.2013.07.007 pmid:23845426
    CrossRefPubMed
  23. 23.↵
    1. Fukui M
    . Guidelines for the diagnosis and treatment of spontaneous occlusion of the circle of Willis (‘moyamoya’ disease): Research Committee on Spontaneous Occlusion of the Circle of Willis (Moyamoya Disease) of the Ministry of Health and Welfare, Japan. Clin Neurol Neurosurg 1997;99(Suppl 2):S238–40 pmid:9409446
    CrossRefPubMedWeb of Science
  24. 24.↵
    1. Zhang Y,
    2. Brady M,
    3. Smith S
    . Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 2001;20:45–57 doi:10.1109/42.906424 pmid:11293691
    CrossRefPubMedWeb of Science
  25. 25.↵
    1. Jenkinson M,
    2. Smith S
    . A global optimisation method for robust affine registration of brain images. Med Image Anal 2001;5:143–56 doi:10.1016/S1361-8415(01)00036-6 pmid:11516708
    CrossRefPubMedWeb of Science
  26. 26.↵
    1. Wechsler D
    . Wechsler Intelligence Scale for Children: Fourth Edition Technical and Interpretive Manual. San Antonio: PsychCorp; 2004
  27. 27.↵
    1. Wechsler D
    . Wechsler Intelligence Scale for Children: Fifth Edition. Technical and Interpretive Manual. Bloomington: PsychCorp: Pearson; 2014
  28. 28.↵
    1. van der Zwan A,
    2. Hillen B,
    3. Tulleken CA, et al
    . Variability of the territories of the major cerebral arteries. J Neurosurg 1992;77:927–40 doi:10.3171/jns.1992.77.6.0927 pmid:1432137
    CrossRefPubMedWeb of Science
  29. 29.↵
    1. Desikan RS,
    2. Ségonne F,
    3. Fischl B, et al
    . An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 2006;31:968–80 doi:10.1016/j.neuroimage.2006.01.021 pmid:16530430
    CrossRefPubMedWeb of Science
  30. 30.↵
    1. Mandell DM,
    2. Han JS,
    3. Poublanc J, et al
    . Mapping cerebrovascular reactivity using blood oxygen level-dependent MRI in patients with arterial steno-occlusive disease: comparison with arterial spin labeling MRI. Stroke 2008;39:2021–28 doi:10.1161/STROKEAHA.107.506709 pmid:18451352
    Abstract/FREE Full Text
  31. 31.↵
    1. Thomas BP,
    2. Liu P,
    3. Aslan S, et al
    . Physiologic underpinnings of negative BOLD cerebrovascular reactivity in brain ventricles. Neuroimage 2013;83:505–12 doi:10.1016/j.neuroimage.2013.07.005 pmid:23851322
    CrossRefPubMed
  32. 32.↵
    1. Lipp I,
    2. Murphy K,
    3. Caseras X, et al
    . Agreement and repeatability of vascular reactivity estimates based on a breath-hold task and a resting state scan. Neuroimage 2015;113:387–96 doi:10.1016/j.neuroimage.2015.03.004 pmid:25795342
    CrossRefPubMed
  33. 33.↵
    1. Landis JR,
    2. Koch GG
    . The measurement of observer agreement for categorical data. Biometrics 1977;33:159–74 doi:10.2307/2529310 pmid:843571
    CrossRefPubMedWeb of Science
  34. 34.↵
    1. Kosinski PD,
    2. Croal PL,
    3. Leung J, et al
    . The severity of anaemia depletes cerebrovascular dilatory reserve in children with sickle cell disease: a quantitative magnetic resonance imaging study. Br J Haematol 2017;176:280–87 doi:10.1111/bjh.14424 pmid:27905100
    CrossRefPubMed
  35. 35.↵
    1. Prohovnik I,
    2. Hurlet-Jensen A,
    3. Adams R, et al
    . Hemodynamic etiology of elevated flow velocity and stroke in sickle-cell disease. J Cereb Blood Flow Metab 2009;29:803–10 doi:10.1038/jcbfm.2009.6 pmid:19209182
    CrossRefPubMedWeb of Science
  36. 36.↵
    1. Abbott DF,
    2. Opdam HI,
    3. Briellmann RS, et al
    . Brief breath holding may confound functional magnetic resonance imaging studies. Hum Brain Mapp 2005;24:284–90 doi:10.1002/hbm.20086 pmid:15678482
    CrossRefPubMed
  37. 37.↵
    1. Raut RV,
    2. Nair VA,
    3. Sattin JA, et al
    . Hypercapnic evaluation of vascular reactivity in healthy aging and acute stroke via functional MRI. Neuroimage Clin 2016;12:173–79 doi:10.1016/j.nicl.2016.06.016 pmid:27437178
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 39 (9)
American Journal of Neuroradiology
Vol. 39, Issue 9
1 Sep 2018
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Breath-Hold Blood Oxygen Level–Dependent MRI: A Tool for the Assessment of Cerebrovascular Reserve in Children with Moyamoya Disease
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
N. Dlamini, P. Shah-Basak, J. Leung, F. Kirkham, M. Shroff, A. Kassner, A. Robertson, P. Dirks, R. Westmacott, G. deVeber, W. Logan
Breath-Hold Blood Oxygen Level–Dependent MRI: A Tool for the Assessment of Cerebrovascular Reserve in Children with Moyamoya Disease
American Journal of Neuroradiology Sep 2018, 39 (9) 1717-1723; DOI: 10.3174/ajnr.A5739

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Breath-Hold Blood Oxygen Level–Dependent MRI: A Tool for the Assessment of Cerebrovascular Reserve in Children with Moyamoya Disease
N. Dlamini, P. Shah-Basak, J. Leung, F. Kirkham, M. Shroff, A. Kassner, A. Robertson, P. Dirks, R. Westmacott, G. deVeber, W. Logan
American Journal of Neuroradiology Sep 2018, 39 (9) 1717-1723; DOI: 10.3174/ajnr.A5739
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • Macrovascular blood flow and microvascular cerebrovascular reactivity are regionally coupled in adolescence
  • Robust estimation of dynamic cerebrovascular reactivity using breath-holding fMRI: application in diabetes and hypertension
  • A practical modification to a resting state fMRI protocol for improved characterization of cerebrovascular function
  • Predicting Ischemic Risk Using Blood Oxygen Level-Dependent MRI in Children with Moyamoya
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Kurtosis and Epileptogenic Tubers: A Pilot Study
  • Glutaric Aciduria Type 1: DK vs. Conventional MRI
  • Multiparametric MRI in PEDS Pontine Glioma
Show more Functional

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire