Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • Advancing NeuroMRI with High-Relaxivity Contrast Agents
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • Advancing NeuroMRI with High-Relaxivity Contrast Agents
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates


Improved Turnaround Times | Median time to first decision: 12 days

Research ArticleAdult Brain

Impact of Focal White Matter Damage on Localized Subcortical Gray Matter Atrophy in Multiple Sclerosis: A 5-Year Study

T.A. Fuchs, K. Carolus, R.H.B. Benedict, N. Bergsland, D. Ramasamy, D. Jakimovski, B. Weinstock-Guttman, A. Kuceyeski, R. Zivadinov and M.G. Dwyer
American Journal of Neuroradiology August 2018, 39 (8) 1480-1486; DOI: https://doi.org/10.3174/ajnr.A5720
T.A. Fuchs
aFrom the Department of Neurology (T.F., K.C., N.B., D.R., D.J., R.Z., M.G.D.), Buffalo Neuroimaging Analysis Center
cDepartment of Neurology (T.F., R.H.B.B., N.B., D.R., D.J., B.W.G., M.G.D.), Jacobs Multiple Sclerosis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for T.A. Fuchs
K. Carolus
aFrom the Department of Neurology (T.F., K.C., N.B., D.R., D.J., R.Z., M.G.D.), Buffalo Neuroimaging Analysis Center
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for K. Carolus
R.H.B. Benedict
cDepartment of Neurology (T.F., R.H.B.B., N.B., D.R., D.J., B.W.G., M.G.D.), Jacobs Multiple Sclerosis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for R.H.B. Benedict
N. Bergsland
cDepartment of Neurology (T.F., R.H.B.B., N.B., D.R., D.J., B.W.G., M.G.D.), Jacobs Multiple Sclerosis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for N. Bergsland
D. Ramasamy
aFrom the Department of Neurology (T.F., K.C., N.B., D.R., D.J., R.Z., M.G.D.), Buffalo Neuroimaging Analysis Center
cDepartment of Neurology (T.F., R.H.B.B., N.B., D.R., D.J., B.W.G., M.G.D.), Jacobs Multiple Sclerosis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for D. Ramasamy
D. Jakimovski
aFrom the Department of Neurology (T.F., K.C., N.B., D.R., D.J., R.Z., M.G.D.), Buffalo Neuroimaging Analysis Center
cDepartment of Neurology (T.F., R.H.B.B., N.B., D.R., D.J., B.W.G., M.G.D.), Jacobs Multiple Sclerosis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for D. Jakimovski
B. Weinstock-Guttman
cDepartment of Neurology (T.F., R.H.B.B., N.B., D.R., D.J., B.W.G., M.G.D.), Jacobs Multiple Sclerosis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for B. Weinstock-Guttman
A. Kuceyeski
dDepartment of Radiology (A.K.), Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, New York.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Kuceyeski
R. Zivadinov
aFrom the Department of Neurology (T.F., K.C., N.B., D.R., D.J., R.Z., M.G.D.), Buffalo Neuroimaging Analysis Center
bMR Imaging Clinical Translational Research Center (R.Z.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for R. Zivadinov
M.G. Dwyer
aFrom the Department of Neurology (T.F., K.C., N.B., D.R., D.J., R.Z., M.G.D.), Buffalo Neuroimaging Analysis Center
cDepartment of Neurology (T.F., R.H.B.B., N.B., D.R., D.J., B.W.G., M.G.D.), Jacobs Multiple Sclerosis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M.G. Dwyer
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Geurts JJ,
    2. Barkhof F
    . Grey matter pathology in multiple sclerosis. Lancet Neurol 2008;7:841–51 doi:10.1016/S1474-4422(08)70191-1 pmid:18703006
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. Audoin B,
    2. Zaaraoui W,
    3. Reuter F, et al
    . Atrophy mainly affects the limbic system and the deep grey matter at the first stage of multiple sclerosis. J Neurol Neurosurg Psychiatry 2010;81:690–95 doi:10.1136/jnnp.2009.188748 pmid:20392976
    Abstract/FREE Full Text
  3. 3.↵
    1. Zivadinov R,
    2. Uher T,
    3. Hagemeier J, et al
    . A serial 10-year follow-up study of brain atrophy and disability progression in RRMS patients. Mult Scler 2016;22:1709–18 doi:10.1177/1352458516629769 pmid:26883943
    CrossRefPubMed
  4. 4.↵
    1. Absinta M,
    2. Vuolo L,
    3. Rao A, et al
    . Gadolinium-based MRI characterization of leptomeningeal inflammation in multiple sclerosis. Neurology 2015;85:18–28 doi:10.1212/WNL.0000000000001587 pmid:25888557
    Abstract/FREE Full Text
  5. 5.↵
    1. Minagar A,
    2. Barnett MH,
    3. Benedict RH, et al
    . The thalamus and multiple sclerosis: modern views on pathologic, imaging, and clinical aspects. Neurology 2013;80:210–19 doi:10.1212/WNL.0b013e31827b910b pmid:23296131
    Abstract/FREE Full Text
  6. 6.↵
    1. Kuceyeski AF,
    2. Vargas W,
    3. Dayan M, et al
    . Modeling the relationship among gray matter atrophy, abnormalities in connecting white matter, and cognitive performance in early multiple sclerosis. AJNR Am J Neuroradiol 2015;36:702–09 doi:10.3174/ajnr.A4165 pmid:25414004
    Abstract/FREE Full Text
  7. 7.↵
    1. Calabrese M,
    2. Magliozzi R,
    3. Ciccarelli O, et al
    . Exploring the origins of grey matter damage in multiple sclerosis. Nat Rev Neurosci 2015;16:147–58 doi:10.1038/nrn3900 pmid:25697158
    CrossRefPubMed
  8. 8.↵
    1. Dziedzic T,
    2. Metz I,
    3. Dallenga T, et al
    . Wallerian degeneration: a major component of early axonal pathology in multiple sclerosis. Brain Pathol 2010;20:976–85 doi:10.1111/j.1750-3639.2010.00401.x pmid:20477831
    CrossRefPubMedWeb of Science
  9. 9.↵
    1. Vargas ME,
    2. Barres BA
    . Why is Wallerian degeneration in the CNS so slow? Annu Rev Neurosci 2007;30:153–79 doi:10.1146/annurev.neuro.30.051606.094354 pmid:17506644
    CrossRefPubMedWeb of Science
  10. 10.↵
    1. Mühlau M,
    2. Buck D,
    3. Förschler A, et al
    . White-matter lesions drive deep gray-matter atrophy in early multiple sclerosis: support from structural MRI. Mult Scler 2013;19:1485–92 doi:10.1177/1352458513478673 pmid:23462349
    CrossRefPubMed
  11. 11.↵
    1. Sepulcre J,
    2. Goñi J,
    3. Masdeu JC, et al
    . Contribution of white matter lesions to gray matter atrophy in multiple sclerosis: evidence from voxel-based analysis of T1 lesions in the visual pathway. Arch Neurol 2009;66:173–79 doi:10.1001/archneurol.2008.562 pmid:19204153
    CrossRefPubMedWeb of Science
  12. 12.↵
    1. Sepulcre J,
    2. Sastre-Garriga J,
    3. Cercignani M, et al
    . Regional gray matter atrophy in early primary progressive multiple sclerosis: a voxel-based morphometry study. Arch Neurol 2006;63:1175–80 doi:10.1001/archneur.63.8.1175 pmid:16908748
    CrossRefPubMedWeb of Science
  13. 13.↵
    1. Henry RG,
    2. Shieh M,
    3. Amirbekian B, et al
    . Connecting white matter injury and thalamic atrophy in clinically isolated syndromes. J Neurol Sci 2009;282:61–66 doi:10.1016/j.jns.2009.02.379 pmid:19394969
    CrossRefPubMedWeb of Science
  14. 14.↵
    1. Chard DT,
    2. Brex PA,
    3. Ciccarelli O, et al
    . The longitudinal relation between brain lesion load and atrophy in multiple sclerosis: a 14 year follow up study. J Neurol Neurosurg Psychiatry 2003;74:1551–54 doi:10.1136/jnnp.74.11.1551 pmid:14617714
    Abstract/FREE Full Text
  15. 15.↵
    1. Kuceyeski A,
    2. Maruta J,
    3. Relkin N, et al
    . The Network Modification (NeMo) tool: elucidating the effect of white matter integrity changes on cortical and subcortical structural connectivity. Brain Connect 2013;3:451–63 doi:10.1089/brain.2013.0147 pmid:23855491
    CrossRefPubMed
  16. 16.↵
    1. Reich DS,
    2. Ozturk A,
    3. Calabresi PA, et al
    . Automated vs. conventional tractography in multiple sclerosis: variability and correlation with disability. Neuroimage 2010;49:3047–56 doi:10.1016/j.neuroimage.2009.11.043 pmid:19944769
    CrossRefPubMedWeb of Science
  17. 17.↵
    1. Kappus N,
    2. Weinstock-Guttman B,
    3. Hagemeier J, et al
    . Cardiovascular risk factors are associated with increased lesion burden and brain atrophy in multiple sclerosis. J Neurol Neurosurg Psychiatry 2016;87:181–87 doi:10.1136/jnnp-2014-310051 pmid:25722366
    Abstract/FREE Full Text
  18. 18.↵
    1. Zivadinov R,
    2. Ramasamy DP,
    3. Benedict RR, et al
    . Cerebral microbleeds in multiple sclerosis evaluated on susceptibility-weighted images and quantitative susceptibility maps: a case-control study. Radiology 2016;281:884–95 doi:10.1148/radiol.2016160060 pmid:27308776
    CrossRefPubMed
  19. 19.↵
    1. Zivadinov R,
    2. Rudick RA,
    3. De Masi R, et al
    . Effects of IV methylprednisolone on brain atrophy in relapsing-remitting MS. Neurology 2001;57:1239–47 doi:10.1212/WNL.57.7.1239 pmid:11591843
    Abstract/FREE Full Text
  20. 20.↵
    1. Gelineau-Morel R,
    2. Tomassini V,
    3. Jenkinson M, et al
    . The effect of hypointense white matter lesions on automated gray matter segmentation in multiple sclerosis. Hum Brain Mapp 2012;33:2802–14 doi:10.1002/hbm.21402 pmid:21976406
    CrossRefPubMed
  21. 21.↵
    1. Smith SM,
    2. Zhang Y,
    3. Jenkinson M, et al
    . Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage 2002;17:479–89 doi:10.1006/nimg.2002.1040 pmid:12482100
    CrossRefPubMedWeb of Science
  22. 22.↵
    1. Patenaude B,
    2. Smith S,
    3. Kennedy D, et al
    . A Bayesian model of shape and appearance for subcortical brain. Neuroimage 2011;56:907–22
    CrossRefPubMedWeb of Science
  23. 23.↵
    1. Smith SM,
    2. De Stefano N,
    3. Jenkinson M, et al
    . Normalized accurate measurement of longitudinal brain change. J Comput Assist Tomogr 2001;25:466–75 doi:10.1097/00004728-200105000-00022 pmid:11351200
    CrossRefPubMedWeb of Science
  24. 24.↵
    1. Avants BB,
    2. Tustison NJ,
    3. Song G, et al
    . A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 2011;54:2033–44 doi:10.1016/j.neuroimage.2010.09.025 pmid:20851191
    CrossRefPubMed
  25. 25.↵
    1. Fuchs T,
    2. Dwyer M,
    3. Kuceyeski A, et al
    . White matter tract network disruption explains reduced conscientiousness in multiple sclerosis. Hum Brain Mapp 2018 May 8. [Epub ahead of print] doi:10.1002/hbm.24203 pmid:29740964
    CrossRefPubMed
  26. 26.↵
    1. Van Waesberghe JH,
    2. Kamphorst W,
    3. De Groot CJA, et al
    . Axonal loss in multiple sclerosis lesions: magnetic resonance imaging insights into substrates of disability. Ann Neurol 1999;46:747–54 pmid:10553992
    CrossRefPubMedWeb of Science
  27. 27.↵
    1. Zurawski J,
    2. Lassmann H,
    3. Bakshi R
    . Use of magnetic resonance imaging to visualize leptomeningeal inflammation in patients with multiple sclerosis: a review. JAMA Neurol 2017;74:100–09 doi:10.1001/jamaneurol.2016.4237 pmid:27893883
    CrossRefPubMed
  28. 28.↵
    1. Louapre C,
    2. Govindarajan ST,
    3. Giannì C, et al
    . Heterogeneous pathological processes account for thalamic degeneration in multiple sclerosis: insights from 7 T imaging. Mult Scler 2017 Aug 1. [Epub ahead of print] doi:10.1177/1352458517726382 pmid:28803512
    CrossRefPubMed
  29. 29.↵
    1. Kappos L,
    2. De Stefano N,
    3. Freedman MS, et al
    . Inclusion of brain volume loss in a revised measure of “no evidence of disease activity” (NEDA-4) in relapsing-remitting multiple sclerosis. Mult Scler 2016;22:1297–305 doi:10.1177/1352458515616701 pmid:26585439
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 39 (8)
American Journal of Neuroradiology
Vol. 39, Issue 8
1 Aug 2018
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Impact of Focal White Matter Damage on Localized Subcortical Gray Matter Atrophy in Multiple Sclerosis: A 5-Year Study
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
T.A. Fuchs, K. Carolus, R.H.B. Benedict, N. Bergsland, D. Ramasamy, D. Jakimovski, B. Weinstock-Guttman, A. Kuceyeski, R. Zivadinov, M.G. Dwyer
Impact of Focal White Matter Damage on Localized Subcortical Gray Matter Atrophy in Multiple Sclerosis: A 5-Year Study
American Journal of Neuroradiology Aug 2018, 39 (8) 1480-1486; DOI: 10.3174/ajnr.A5720

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Impact of Focal White Matter Damage on Localized Subcortical Gray Matter Atrophy in Multiple Sclerosis: A 5-Year Study
T.A. Fuchs, K. Carolus, R.H.B. Benedict, N. Bergsland, D. Ramasamy, D. Jakimovski, B. Weinstock-Guttman, A. Kuceyeski, R. Zivadinov, M.G. Dwyer
American Journal of Neuroradiology Aug 2018, 39 (8) 1480-1486; DOI: 10.3174/ajnr.A5720
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • Structural disconnectivity from quantitative susceptibility mapping rim+ lesions is related to disability in people with multiple sclerosis
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • Cerebral ADC Changes in Fabry Disease
  • ML for Glioma Molecular Subtype Prediction
Show more Adult Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire