Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleFunctional
Open Access

Interaction of Developmental Venous Anomalies with Resting-State Functional MRI Measures

B. Sundermann, B. Pfleiderer, H. Minnerup, K. Berger and G. Douaud
American Journal of Neuroradiology December 2018, 39 (12) 2326-2331; DOI: https://doi.org/10.3174/ajnr.A5847
B. Sundermann
aFrom the Nuffield Department of Clinical Neurosciences (B.S., G.D.), Oxford Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
bInstitute of Clinical Radiology (B.S., B.P.), Medical Faculty, University of Münster and University Hospital Münster, Münster, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for B. Sundermann
B. Pfleiderer
bInstitute of Clinical Radiology (B.S., B.P.), Medical Faculty, University of Münster and University Hospital Münster, Münster, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for B. Pfleiderer
H. Minnerup
cDepartment of Epidemiology and Social Medicine (H.M., K.B.), University of Münster, Münster, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for H. Minnerup
K. Berger
cDepartment of Epidemiology and Social Medicine (H.M., K.B.), University of Münster, Münster, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for K. Berger
G. Douaud
aFrom the Nuffield Department of Clinical Neurosciences (B.S., G.D.), Oxford Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for G. Douaud
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Bartsch AJ,
    2. Homola G,
    3. Biller A, et al
    . Diagnostic functional MRI: illustrated clinical applications and decision-making. J Magn Reson Imaging 2006;23:921–32 doi:10.1002/jmri.20579 pmid:16649199
    CrossRefPubMed
  2. 2.↵
    1. Leuthardt EC,
    2. Allen M,
    3. Kamran M, et al
    . Resting-state blood oxygen level-dependent functional MRI: a paradigm shift in preoperative brain mapping. Stereotact Funct Neurosurg 2015;93:427–39 doi:10.1159/000442424 pmid:26784290
    CrossRefPubMed
  3. 3.↵
    1. Gabriel M,
    2. Brennan NP,
    3. Peck KK, et al
    . Blood oxygen level dependent functional magnetic resonance imaging for presurgical planning. Neuroimaging Clin N Am 2014;24:557–71 doi:10.1016/j.nic.2014.07.003 pmid:25441500
    CrossRefPubMed
  4. 4.↵
    1. Bandettini PA
    . Twenty years of functional MRI: the science and the stories. Neuroimage 2012;62:575–88 doi:10.1016/j.neuroimage.2012.04.026 pmid:22542637
    CrossRefPubMed
  5. 5.↵
    1. Zhang D,
    2. Raichle ME
    . Disease and the brain's dark energy. Nat Rev Neurol 2010;6:15–28 doi:10.1038/nrneurol.2009.198 pmid:20057496
    CrossRefPubMedWeb of Science
  6. 6.↵
    1. van den Heuvel MP,
    2. Hulshoff Pol HE
    . Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol 2010;20:519–34 doi:10.1016/j.euroneuro.2010.03.008 pmid:20471808
    CrossRefPubMed
  7. 7.↵
    1. Barkhof F,
    2. Haller S,
    3. Rombouts SA
    . Resting-state functional MR imaging: a new window to the brain. Radiology 2014;272:29–49 doi:10.1148/radiol.14132388 pmid:24956047
    CrossRefPubMed
  8. 8.↵
    1. Lee MH,
    2. Smyser CD,
    3. Shimony JS
    . Resting-state fMRI: a review of methods and clinical applications. AJNR Am J Neuroradiol 2013;34:1866–72 doi:10.3174/ajnr.A3263 pmid:22936095
    Abstract/FREE Full Text
  9. 9.↵
    1. Lv H,
    2. Wang Z,
    3. Tong E, et al
    . Resting-state functional MRI: everything that nonexperts have always wanted to know. AJNR Am J Neuroradiol 2018;39:1390–99 doi:10.3174/ajnr.A5527 pmid:29348136
    Abstract/FREE Full Text
  10. 10.↵
    1. Leuthardt EC,
    2. Guzman G,
    3. Bandt SK, et al
    . Integration of resting state functional MRI into clinical practice: a large single institution experience. PLoS One 2018;13:e0198349 doi:10.1371/journal.pone.0198349 pmid:29933375
    CrossRefPubMed
  11. 11.↵
    1. Hou BL,
    2. Bhatia S,
    3. Carpenter JS
    . Quantitative comparisons on hand motor functional areas determined by resting state and task BOLD fMRI and anatomical MRI for pre-surgical planning of patients with brain tumors. Neuroimage Clin 2016;11:378–87 doi:10.1016/j.nicl.2016.03.003 pmid:27069871
    CrossRefPubMed
  12. 12.↵
    1. Parker Jones O,
    2. Voets NL,
    3. Adcock JE, et al
    . Resting connectivity predicts task activation in pre-surgical populations. Neuroimage Clin 2016;13:378–85 doi:10.1016/j.nicl.2016.12.028 pmid:28123949
    CrossRefPubMed
  13. 13.↵
    1. Lu J,
    2. Zhang H,
    3. Hameed NU, et al
    . An automated method for identifying an independent component analysis-based language-related resting-state network in brain tumor subjects for surgical planning. Sci Rep 2017;7:13769 doi:10.1038/s41598-017-14248-5 pmid:29062010
    CrossRefPubMed
  14. 14.↵
    1. Branco P,
    2. Seixas D,
    3. Deprez S, et al
    . Resting-state functional magnetic resonance imaging for language preoperative planning. Front Hum Neurosci 2016;10:11 doi:10.3389/fnhum.2016.00011 pmid:26869899
    CrossRefPubMed
  15. 15.↵
    1. Kollndorfer K,
    2. Fischmeister FP,
    3. Kasprian G, et al
    . A systematic investigation of the invariance of resting-state network patterns: is resting-state fMRI ready for pre-surgical planning? Front Hum Neurosci 2013;7:95 doi:10.3389/fnhum.2013.00095 pmid:23532457
    CrossRefPubMed
  16. 16.↵
    1. Sundermann B,
    2. Herr D,
    3. Schwindt W, et al
    . Multivariate classification of blood oxygen level-dependent fMRI data with diagnostic intention: a clinical perspective. AJNR Am J Neuroradiol 2014;35:848–55 doi:10.3174/ajnr.A3713 pmid:24029388
    Abstract/FREE Full Text
  17. 17.↵
    1. Wolfers T,
    2. Buitelaar JK,
    3. Beckmann CF, et al
    . From estimating activation locality to predicting disorder: a review of pattern recognition for neuroimaging-based psychiatric diagnostics. Neurosci Biobehav Rev 2015;57:328–49 doi:10.1016/j.neubiorev.2015.08.001 pmid:26254595
    CrossRefPubMed
  18. 18.↵
    1. Rathore S,
    2. Habes M,
    3. Iftikhar MA, et al
    . A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer's disease and its prodromal stages. Neuroimage 2017;155:530–48 doi:10.1016/j.neuroimage.2017.03.057 pmid:28414186
    CrossRefPubMed
  19. 19.↵
    1. de Vos F,
    2. Koini M,
    3. Schouten TM, et al
    . A comprehensive analysis of resting state fMRI measures to classify individual patients with Alzheimer's disease. Neuroimage 2018;167:62–72 doi:10.1016/j.neuroimage.2017.11.025 pmid:29155080
    CrossRefPubMed
  20. 20.↵
    1. Elliott L,
    2. Sharp K,
    3. Alfaro-Almagro F, et al
    . Genome-wide association studies of brain structure and function in the UK biobank. bioRxiv 2018:178806 doi:10.1101/178806
    Abstract/FREE Full Text
  21. 21.↵
    1. Kim SG,
    2. Ogawa S
    . Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals. J Cereb Blood Flow Metab 2012;32:1188–206 doi:10.1038/jcbfm.2012.23 pmid:22395207
    CrossRefPubMed
  22. 22.↵
    1. Langner S,
    2. Buelow R,
    3. Fleck S, et al
    . Management of intracranial incidental findings on brain MRI. Rofo 2016;188:1123–33 doi:10.1055/s-0042-111075 pmid:27433969
    CrossRefPubMed
  23. 23.↵
    1. Sandeman EM,
    2. Hernandez Mdel C,
    3. Morris Z, et al
    . Incidental findings on brain MR imaging in older community-dwelling subjects are common but serious medical consequences are rare: a cohort study. PLoS One 2013;8:e71467 doi:10.1371/journal.pone.0071467 pmid:23967214
    CrossRefPubMed
  24. 24.↵
    1. Bos D,
    2. Poels MM,
    3. Adams HH, et al
    . Prevalence, clinical management, and natural course of incidental findings on brain MR images: the population-based Rotterdam scan study. Radiology 2016;281:507–15 doi:10.1148/radiol.2016160218 pmid:27337027
    CrossRefPubMed
  25. 25.↵
    1. Morris Z,
    2. Whiteley WN,
    3. Longstreth WT Jr., et al
    . Incidental findings on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ 2009;339:b3016 doi:10.1136/bmj.b3016 pmid:19687093
    Abstract/FREE Full Text
  26. 26.↵
    1. Vernooij MW,
    2. Ikram MA,
    3. Tanghe HL, et al
    . Incidental findings on brain MRI in the general population. N Engl J Med 2007;357:1821–28 doi:10.1056/NEJMoa070972 pmid:17978290
    CrossRefPubMedWeb of Science
  27. 27.↵
    1. Borra RJ,
    2. Sorensen AG
    . Incidental findings in brain MRI research: what do we owe our subjects? J Am Coll Radiol 2011;8:848–52 doi:10.1016/j.jacr.2011.08.009 pmid:22137002
    CrossRefPubMed
  28. 28.↵
    1. Lasjaunias P,
    2. Burrows P,
    3. Planet C
    . Developmental venous anomalies (DVA): the so-called venous angioma. Neurosurg Rev 1986;9:233–42 doi:10.1007/BF01743138 pmid:3550523
    CrossRefPubMedWeb of Science
  29. 29.↵
    1. Lee M,
    2. Kim MS
    . Image findings in brain developmental venous anomalies. J Cerebrovasc Endovasc Neurosurg 2012;14:37–43 doi:10.7461/jcen.2012.14.1.37 pmid:23210028
    CrossRefPubMed
  30. 30.↵
    1. Sarwar M,
    2. McCormick WF
    . Intracerebral venous angioma: case report and review. Arch Neurol 1978;35:323–25 doi:10.1001/archneur.1978.00500290069012 pmid:646686
    CrossRefPubMedWeb of Science
  31. 31.↵
    1. Ruíz DS,
    2. Yilmaz H,
    3. Gailloud P
    . Cerebral developmental venous anomalies: current concepts. Ann Neurol 2009;66:271–83 doi:10.1002/ana.21754 pmid:19798638
    CrossRefPubMedWeb of Science
  32. 32.↵
    1. Jung HN,
    2. Kim ST,
    3. Cha J, et al
    . Diffusion and perfusion MRI findings of the signal-intensity abnormalities of brain associated with developmental venous anomaly. AJNR Am J Neuroradiol 2014;35:1539–42 doi:10.3174/ajnr.A3900 pmid:24651815
    Abstract/FREE Full Text
  33. 33.↵
    1. Teuber A,
    2. Sundermann B,
    3. Kugel H, et al
    . MR imaging of the brain in large cohort studies: feasibility report of the population- and patient-based BiDirect study. Eur Radiol 2017;27:231–38 doi:10.1007/s00330-016-4303-9 pmid:27059857
    CrossRefPubMed
  34. 34.↵
    1. Teismann H,
    2. Wersching H,
    3. Nagel M, et al
    . Establishing the bidirectional relationship between depression and subclinical arteriosclerosis: rationale, design, and characteristics of the BiDirect study. BMC Psychiatry 2014;14:174 doi:10.1186/1471-244X-14-174 pmid:24924233
    CrossRefPubMed
  35. 35.↵
    1. Beckmann CF,
    2. DeLuca M,
    3. Devlin JT, et al
    . Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 2005;360:1001–13 doi:10.1098/rstb.2005.1634 pmid:16087444
    CrossRefPubMed
  36. 36.↵
    1. Griffanti L,
    2. Douaud G,
    3. Bijsterbosch J, et al
    . Hand classification of fMRI ICA noise components. Neuroimage 2017;154:188–205 doi:10.1016/j.neuroimage.2016.12.036 pmid:27989777
    CrossRefPubMed
  37. 37.↵
    1. Salimi-Khorshidi G,
    2. Douaud G,
    3. Beckmann CF, et al
    . Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers. Neuroimage 2014;90:449–68 doi:10.1016/j.neuroimage.2013.11.046 pmid:24389422
    CrossRefPubMedWeb of Science
  38. 38.↵
    1. Griffanti L,
    2. Salimi-Khorshidi G,
    3. Beckmann CF, et al
    . ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging. Neuroimage 2014;95:232–47 doi:10.1016/j.neuroimage.2014.03.034 pmid:24657355
    CrossRefPubMedWeb of Science
  39. 39.↵
    1. Smith SM,
    2. Jenkinson M,
    3. Woolrich MW, et al
    . Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 2004;23(Suppl 1):S208–19 doi:10.1016/j.neuroimage.2004.07.051 pmid:15501092
    CrossRefPubMedWeb of Science
  40. 40.↵
    1. Jenkinson M,
    2. Beckmann CF,
    3. Behrens TE, et al
    . FSL. Neuroimage 2012;62:782–90 doi:10.1016/j.neuroimage.2011.09.015 pmid:21979382
    CrossRefPubMedWeb of Science
  41. 41.↵
    1. Jenkinson M,
    2. Bannister P,
    3. Brady M, et al
    . Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 2002;17:825–41 doi:10.1006/nimg.2002.1132 pmid:12377157
    CrossRefPubMedWeb of Science
  42. 42.↵
    1. Smith SM
    . Fast robust automated brain extraction. Hum Brain Mapp 2002;17:143–55 doi:10.1002/hbm.10062 pmid:12391568
    CrossRefPubMedWeb of Science
  43. 43.↵
    1. Beckmann CF,
    2. Smith SM
    . Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans Med Imaging 2004;23:137–52 doi:10.1109/TMI.2003.822821 pmid:14964560
    CrossRefPubMedWeb of Science
  44. 44.↵
    1. Minka T
    . Automatic choice of dimensionality for PCA: technical report 514. MIT Media Lab Vision and Modeling Group. 2000. https://tminka.github.io/papers/pca/minka-pca.pdf. Accessed April 12, 2017.
  45. 45.↵
    1. Hyvärinen A
    . Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans Neural Netw 1999;10:626–34 doi:10.1109/72.761722 pmid:18252563
    CrossRefPubMedWeb of Science
  46. 46.↵
    1. Greve DN,
    2. Fischl B
    . Accurate and robust brain image alignment using boundary-based registration. Neuroimage 2009;48:63–72 doi:10.1016/j.neuroimage.2009.06.060 pmid:19573611
    CrossRefPubMedWeb of Science
  47. 47.↵
    1. Lehéricy S,
    2. Biondi A,
    3. Sourour N, et al
    . Arteriovenous brain malformations: is functional MR imaging reliable for studying language reorganization in patients? Initial observations. Radiology 2002;223:672–82 doi:10.1148/radiol.2233010792 pmid:12034934
    CrossRefPubMedWeb of Science
  48. 48.↵
    1. Kroll H,
    2. Soares BP,
    3. Saloner D, et al
    . Perfusion-CT of developmental venous anomalies: typical and atypical hemodynamic patterns. J Neuroradiol 2010;37:239–42 doi:10.1016/j.neurad.2009.09.002 pmid:19959233
    CrossRefPubMed
  49. 49.↵
    1. Camacho DL,
    2. Smith JK,
    3. Grimme JD, et al
    . Atypical MR imaging perfusion in developmental venous anomalies. AJNR Am J Neuroradiol 2004;25:1549–52 pmid:15502136
    Abstract/FREE Full Text
  50. 50.↵
    1. Hanson EH,
    2. Roach CJ,
    3. Ringdahl EN, et al
    . Developmental venous anomalies: appearance on whole-brain CT digital subtraction angiography and CT perfusion. Neuroradiology 2011;53:331–41 doi:10.1007/s00234-010-0739-9 pmid:20652805
    CrossRefPubMed
  51. 51.↵
    1. Sharma A,
    2. Zipfel GJ,
    3. Hildebolt C, et al
    . Hemodynamic effects of developmental venous anomalies with and without cavernous malformations. AJNR Am J Neuroradiol 2013;34:1746–51 doi:10.3174/ajnr.A3516 pmid:23598827
    Abstract/FREE Full Text
  52. 52.↵
    1. Iv M,
    2. Fischbein NJ,
    3. Zaharchuk G
    . Association of developmental venous anomalies with perfusion abnormalities on arterial spin labeling and bolus perfusion-weighted imaging. J Neuroimaging 2015;25:243–50 doi:10.1111/jon.12119 pmid:24717021
    CrossRefPubMed
  53. 53.↵
    1. Larvie M,
    2. Timerman D,
    3. Thum JA
    . Brain metabolic abnormalities associated with developmental venous anomalies. AJNR Am J Neuroradiol 2015;36:475–80 doi:10.3174/ajnr.A4172 pmid:25477358
    Abstract/FREE Full Text
  54. 54.↵
    1. Kelly RE Jr.,
    2. Alexopoulos GS,
    3. Wang Z, et al
    . Visual inspection of independent components: defining a procedure for artifact removal from fMRI data. J Neurosci Methods 2010;189:233–45 doi:10.1016/j.jneumeth.2010.03.028 pmid:20381530
    CrossRefPubMedWeb of Science
  55. 55.↵
    1. Murphy K,
    2. Birn RM,
    3. Bandettini PA
    . Resting-state fMRI confounds and cleanup. Neuroimage 2013;80:349–59 doi:10.1016/j.neuroimage.2013.04.001 pmid:23571418
    CrossRefPubMedWeb of Science
  56. 56.↵
    1. Thomas CG,
    2. Harshman RA,
    3. Menon RS
    . Noise reduction in BOLD-based fMRI using component analysis. Neuroimage 2002;17:1521–37 doi:10.1006/nimg.2002.1200 pmid:12414291
    CrossRefPubMedWeb of Science
  57. 57.↵
    1. Beall EB,
    2. Lowe MJ
    . Isolating physiologic noise sources with independently determined spatial measures. Neuroimage 2007;37:1286–300 doi:10.1016/j.neuroimage.2007.07.004 pmid:17689982
    CrossRefPubMed
  58. 58.↵
    1. Perlbarg V,
    2. Bellec P,
    3. Anton JL, et al
    . CORSICA: correction of structured noise in fMRI by automatic identification of ICA components. Magn Reson Imaging 2007;25:35–46 doi:10.1016/j.mri.2006.09.042 pmid:17222713
    CrossRefPubMedWeb of Science
  59. 59.↵
    1. Sui J,
    2. Adali T,
    3. Pearlson GD, et al
    . An ICA-based method for the identification of optimal FMRI features and components using combined group-discriminative techniques. Neuroimage 2009;46:73–86 doi:10.1016/j.neuroimage.2009.01.026 pmid:19457398
    CrossRefPubMed
  60. 60.↵
    1. Storti SF,
    2. Formaggio E,
    3. Nordio R, et al
    . Automatic selection of resting-state networks with functional magnetic resonance imaging. Front Neurosci 2013;7:72 doi:10.3389/fnins.2013.00072 pmid:23730268
    CrossRefPubMed
  61. 61.↵
    1. Bhaganagarapu K,
    2. Jackson GD,
    3. Abbott DF
    . An automated method for identifying artifact in independent component analysis of resting-state FMRI. Front Hum Neurosci 2013;7:343 doi:10.3389/fnhum.2013.00343 pmid:23847511
    CrossRefPubMed
  62. 62.↵
    1. Tohka J,
    2. Foerde K,
    3. Aron AR, et al
    . Automatic independent component labeling for artifact removal in fMRI. Neuroimage 2008;39:1227–45 doi:10.1016/j.neuroimage.2007.10.013 pmid:18042495
    CrossRefPubMedWeb of Science
  63. 63.↵
    1. De Martino F,
    2. Gentile F,
    3. Esposito F, et al
    . Classification of fMRI independent components using IC-fingerprints and support vector machine classifiers. Neuroimage 2007;34:177–94 doi:10.1016/j.neuroimage.2006.08.041 pmid:17070708
    CrossRefPubMedWeb of Science
  64. 64.↵
    1. Sochat V,
    2. Supekar K,
    3. Bustillo J, et al
    . A robust classifier to distinguish noise from fMRI independent components. PLoS One 2014;9:e95493 doi:10.1371/journal.pone.0095493 pmid:24748378
    CrossRefPubMed
  65. 65.↵
    1. Caballero-Gaudes C,
    2. Reynolds RC
    . Methods for cleaning the BOLD fMRI signal. Neuroimage 2017;154:128–49 doi:10.1016/j.neuroimage.2016.12.018 pmid:27956209
    CrossRefPubMed
  66. 66.↵
    1. Pereira VM,
    2. Geibprasert S,
    3. Krings T, et al
    . Pathomechanisms of symptomatic developmental venous anomalies. Stroke 2008;39:3201–15 doi:10.1161/STROKEAHA.108.521799 pmid:18988912
    Abstract/FREE Full Text
  67. 67.↵
    1. Tomycz ND,
    2. Vora NA,
    3. Kanal E, et al
    . Intracranial arterialized venous angioma: case report with new insights from functional brain MRI. Diagn Interv Radiol 2010;16:13–15 doi:10.4261/1305-3825.DIR.1627-08.1 pmid:19813172
    CrossRefPubMed
  68. 68.↵
    1. Lowe MJ,
    2. Mock BJ,
    3. Sorenson JA
    . Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. Neuroimage 1998;7:119–32 doi:10.1006/nimg.1997.0315 pmid:9558644
    CrossRefPubMedWeb of Science
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 39 (12)
American Journal of Neuroradiology
Vol. 39, Issue 12
1 Dec 2018
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Interaction of Developmental Venous Anomalies with Resting-State Functional MRI Measures
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
B. Sundermann, B. Pfleiderer, H. Minnerup, K. Berger, G. Douaud
Interaction of Developmental Venous Anomalies with Resting-State Functional MRI Measures
American Journal of Neuroradiology Dec 2018, 39 (12) 2326-2331; DOI: 10.3174/ajnr.A5847

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Interaction of Developmental Venous Anomalies with Resting-State Functional MRI Measures
B. Sundermann, B. Pfleiderer, H. Minnerup, K. Berger, G. Douaud
American Journal of Neuroradiology Dec 2018, 39 (12) 2326-2331; DOI: 10.3174/ajnr.A5847
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • Correlates of asymmetric venous drainage in resting state functional magnetic resonance imaging data
  • Functional connectivity of cognition-related brain networks in adults with fetal alcohol syndrome
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Kurtosis and Epileptogenic Tubers: A Pilot Study
  • Glutaric Aciduria Type 1: DK vs. Conventional MRI
  • Multiparametric MRI in PEDS Pontine Glioma
Show more Functional

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire