Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleBrain
Open Access

Subcortical Deep Gray Matter Pathology in Patients with Multiple Sclerosis Is Associated with White Matter Lesion Burden and Atrophy but Not with Cortical Atrophy: A Diffusion Tensor MRI Study

R. Cappellani, N. Bergsland, B. Weinstock-Guttman, C. Kennedy, E. Carl, D.P. Ramasamy, J. Hagemeier, M.G. Dwyer, F. Patti and R. Zivadinov
American Journal of Neuroradiology May 2014, 35 (5) 912-919; DOI: https://doi.org/10.3174/ajnr.A3788
R. Cappellani
aFrom the Buffalo Neuroimaging Analysis Center (R.C., N.B., C.K., E.C., D.P.R., J.H., M.G.D., R.Z.)
cDepartment GF Ingrassia, Section of Neurosciences (R.C., F.P.), University of Catania, Catania, Italy.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N. Bergsland
aFrom the Buffalo Neuroimaging Analysis Center (R.C., N.B., C.K., E.C., D.P.R., J.H., M.G.D., R.Z.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B. Weinstock-Guttman
bJacobs Neurological Institute, Department of Neurology (B.W.-G., R.Z.), State University of New York, Buffalo, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C. Kennedy
aFrom the Buffalo Neuroimaging Analysis Center (R.C., N.B., C.K., E.C., D.P.R., J.H., M.G.D., R.Z.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E. Carl
aFrom the Buffalo Neuroimaging Analysis Center (R.C., N.B., C.K., E.C., D.P.R., J.H., M.G.D., R.Z.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D.P. Ramasamy
aFrom the Buffalo Neuroimaging Analysis Center (R.C., N.B., C.K., E.C., D.P.R., J.H., M.G.D., R.Z.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Hagemeier
aFrom the Buffalo Neuroimaging Analysis Center (R.C., N.B., C.K., E.C., D.P.R., J.H., M.G.D., R.Z.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M.G. Dwyer
aFrom the Buffalo Neuroimaging Analysis Center (R.C., N.B., C.K., E.C., D.P.R., J.H., M.G.D., R.Z.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
F. Patti
cDepartment GF Ingrassia, Section of Neurosciences (R.C., F.P.), University of Catania, Catania, Italy.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R. Zivadinov
aFrom the Buffalo Neuroimaging Analysis Center (R.C., N.B., C.K., E.C., D.P.R., J.H., M.G.D., R.Z.)
bJacobs Neurological Institute, Department of Neurology (B.W.-G., R.Z.), State University of New York, Buffalo, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

REFERENCES

  1. 1.↵
    1. De Stefano N,
    2. Matthews PM,
    3. Filippi M,
    4. et al
    . Evidence of early cortical atrophy in MS: relevance to white matter changes and disability. Neurology 2003;60:1157–62
    CrossRef
  2. 2.↵
    1. Zivadinov R,
    2. Heininen-Brown M,
    3. Schirda CV,
    4. et al
    . Abnormal subcortical deep-gray matter susceptibility-weighted imaging filtered phase measurements in patients with multiple sclerosis: a case-control study. Neuroimage 2012;59:331–39
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Hulst HE,
    2. Geurts JJ
    . Gray matter imaging in multiple sclerosis: what have we learned? BMC Neurol 2011;11:153
    CrossRefPubMed
  4. 4.↵
    1. Lucchinetti CF,
    2. Popescu BF,
    3. Bunyan RF,
    4. et al
    . Inflammatory cortical demyelination in early multiple sclerosis. N Engl J Med 2011;365:2188–97
    CrossRefPubMedWeb of Science
  5. 5.↵
    1. Ceccarelli A,
    2. Rocca MA,
    3. Pagani E,
    4. et al
    . A voxel-based morphometry study of grey matter loss in MS patients with different clinical phenotypes. Neuroimage 2008;42:315–22
    CrossRefPubMedWeb of Science
  6. 6.↵
    1. Calabrese M,
    2. Rinaldi F,
    3. Mattisi I,
    4. et al
    . The predictive value of gray matter atrophy in clinically isolated syndromes. Neurology 2011;77:257–63
    CrossRef
  7. 7.↵
    1. Minagar A,
    2. Barnett MH,
    3. Benedict RH,
    4. et al
    . The thalamus and multiple sclerosis: modern views on pathologic, imaging, and clinical aspects. Neurology 2013;80:210–19
    CrossRef
  8. 8.↵
    1. Fisher E,
    2. Lee JC,
    3. Nakamura K,
    4. et al
    . Gray matter atrophy in multiple sclerosis: a longitudinal study. Ann Neurol 2008;64:255–65
    CrossRefPubMedWeb of Science
  9. 9.↵
    1. Zivadinov R,
    2. Havrdová E,
    3. Bergsland N,
    4. et al
    . Thalamic atrophy is associated with development of clinically definite multiple sclerosis. Radiology 2013;268:831–41
    CrossRefPubMed
  10. 10.↵
    1. Zivadinov R,
    2. Bergsland N,
    3. Dolezal O,
    4. et al
    . Evolution of cortical and thalamus atrophy and disability progression in early relapsing-remitting MS during 5 years. AJNR Am J Neuroradiol 2013;34:1931–39
    Abstract/FREE Full Text
  11. 11.↵
    1. Benedict RH,
    2. Zivadinov R,
    3. Carone DA,
    4. et al
    . Regional lobar atrophy predicts memory impairment in multiple sclerosis. AJNR Am J Neuroradiol 2005;26:1824–31
    Abstract/FREE Full Text
  12. 12.↵
    1. Bakshi R,
    2. Benedict RH,
    3. Bermel RA,
    4. et al
    . T2 hypointensity in the deep gray matter of patients with multiple sclerosis: a quantitative magnetic resonance imaging study. Arch Neurol 2002;59:62–68
    CrossRefPubMedWeb of Science
  13. 13.↵
    1. Bendfeldt K,
    2. Blumhagen JO,
    3. Egger H,
    4. et al
    . Spatiotemporal distribution pattern of white matter lesion volumes and their association with regional grey matter volume reductions in relapsing-remitting multiple sclerosis. Hum Brain Mapp 2010;31:1542–55
    CrossRefPubMedWeb of Science
  14. 14.↵
    1. Bö L,
    2. Geurts JJ,
    3. van der Valk P,
    4. et al
    . Lack of correlation between cortical demyelination and white matter pathologic changes in multiple sclerosis. Arch Neurol 2007;64:76–80
    CrossRefPubMedWeb of Science
  15. 15.↵
    1. Schmierer K,
    2. Wheeler-Kingshott CA,
    3. Boulby PA,
    4. et al
    . Diffusion tensor imaging of post mortem multiple sclerosis brain. Neuroimage 2007;35:467–77
    CrossRefPubMedWeb of Science
  16. 16.↵
    1. Filippi M,
    2. Rocca MA
    . MR imaging of multiple sclerosis. Radiology 2011;259:659–81
    CrossRefPubMedWeb of Science
  17. 17.↵
    1. Rovaris M,
    2. Gass A,
    3. Bammer R,
    4. et al
    . Diffusion MRI in multiple sclerosis. Neurology 2005;65:1526–32
    CrossRef
  18. 18.↵
    1. Raz E,
    2. Cercignani M,
    3. Sbardella E,
    4. et al
    . Clinically isolated syndrome suggestive of multiple sclerosis: voxelwise regional investigation of white and gray matter. Radiology 2010;254:227–34
    CrossRefPubMedWeb of Science
  19. 19.↵
    1. Raz E,
    2. Cercignani M,
    3. Sbardella E,
    4. et al
    . Gray- and white-matter changes 1 year after first clinical episode of multiple sclerosis: MR imaging. Radiology 2010;257:448–54
    CrossRefPubMedWeb of Science
  20. 20.↵
    1. Benedict RH,
    2. Hulst HE,
    3. Bergsland N,
    4. et al
    . Clinical significance of atrophy and white matter mean diffusivity within the thalamus of multiple sclerosis patients. Mult Scler 2013;19:1478–84
    Abstract/FREE Full Text
  21. 21.↵
    1. Mesaros S,
    2. Rocca MA,
    3. Pagani E,
    4. et al
    . Thalamic damage predicts the evolution of primary-progressive multiple sclerosis at 5 years. AJNR Am J Neuroradiol 2011;32:1016–20
    Abstract/FREE Full Text
  22. 22.↵
    1. Senda J,
    2. Watanabe H,
    3. Tsuboi T,
    4. et al
    . MRI mean diffusivity detects widespread brain degeneration in multiple sclerosis. J Neurol Sci 2012;319:105–10
    CrossRefPubMed
  23. 23.↵
    1. Tovar-Moll F,
    2. Evangelou IE,
    3. Chiu AW,
    4. et al
    . Thalamic involvement and its impact on clinical disability in patients with multiple sclerosis: a diffusion tensor imaging study at 3T. AJNR Am J Neuroradiol 2009;30:1380–86
    Abstract/FREE Full Text
  24. 24.↵
    1. Jehna M,
    2. Langkammer C,
    3. Khalil M,
    4. et al
    . An exploratory study on the spatial relationship between regional cortical volume changes and white matter integrity in multiple sclerosis. Brain Connect 2013;3:255–64
    CrossRefPubMed
  25. 25.↵
    1. Henry RG,
    2. Shieh M,
    3. Amirbekian B,
    4. et al
    . Connecting white matter injury and thalamic atrophy in clinically isolated syndromes. J Neurol Sci 2009;282:61–66
    CrossRefPubMedWeb of Science
  26. 26.↵
    1. Mühlau M,
    2. Buck D,
    3. Forschler A,
    4. et al
    . White-matter lesions drive deep gray-matter atrophy in early multiple sclerosis: support from structural MRI. Mult Scler 2013;19:1485–92
    Abstract/FREE Full Text
  27. 27.↵
    1. Polman CH,
    2. Reingold SC,
    3. Banwell B,
    4. et al
    . Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 2011;69:292–302
    CrossRefPubMedWeb of Science
  28. 28.↵
    1. Behrens TE,
    2. Johansen-Berg H,
    3. Woolrich MW,
    4. et al
    . Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci 2003;6:750–57
    CrossRefPubMedWeb of Science
  29. 29.↵
    1. Behrens TE,
    2. Woolrich MW,
    3. Jenkinson M,
    4. et al
    . Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med 2003;50:1077–88
    CrossRefPubMedWeb of Science
  30. 30.↵
    1. Benjamini Y,
    2. Hochberg Y
    . Controlling the false discovery rate—a practical and powerful approach to multiple testing. J Roy Stat Soc B Met 1995;57:289–300
  31. 31.↵
    1. Batista S,
    2. Zivadinov R,
    3. Hoogs M,
    4. et al
    . Basal ganglia, thalamus and neocortical atrophy predicting slowed cognitive processing in multiple sclerosis. J Neurol 2012;259:139–46
    CrossRefPubMedWeb of Science
  32. 32.↵
    1. Bozzali M,
    2. Cercignani M,
    3. Sormani MP,
    4. et al
    . Quantification of brain gray matter damage in different MS phenotypes by use of diffusion tensor MR imaging. AJNR Am J Neuroradiol 2002;23:985–88
    Abstract/FREE Full Text
  33. 33.↵
    1. Liu Y,
    2. Duan Y,
    3. He Y,
    4. et al
    . Whole brain white matter changes revealed by multiple diffusion metrics in multiple sclerosis: a TBSS study. Eur J Radiol 2012;81:2826–32
    CrossRefPubMed
  34. 34.↵
    1. Akbar N,
    2. Lobaugh NJ,
    3. O'Connor P,
    4. et al
    . Diffusion tensor imaging abnormalities in cognitively impaired multiple sclerosis patients. Can J Neurol Sci 2010;37:608–14
    PubMed
  35. 35.↵
    1. Hasan KM,
    2. Walimuni IS,
    3. Abid H,
    4. et al
    . Human brain atlas-based multimodal MRI analysis of volumetry, diffusimetry, relaxometry and lesion distribution in multiple sclerosis patients and healthy adult controls: implications for understanding the pathogenesis of multiple sclerosis and consolidation of quantitative MRI results in MS. J Neurol Sci 2012;313:99–109
    CrossRefPubMed
  36. 36.↵
    1. Yu HJ,
    2. Christodoulou C,
    3. Bhise V,
    4. et al
    . Multiple white matter tract abnormalities underlie cognitive impairment in RRMS. Neuroimage 2012;59:3713–22
    CrossRefPubMedWeb of Science
  37. 37.↵
    1. Bozzali M,
    2. Spanò B,
    3. Parker G,
    4. et al
    . Anatomical brain connectivity can assess cognitive dysfunction in multiple sclerosis. Mult Scler 2013;19:1161–68
    Abstract/FREE Full Text
  38. 38.↵
    1. Ciccarelli O,
    2. Werring DJ,
    3. Wheeler-Kingshott CA,
    4. et al
    . Investigation of MS normal-appearing brain using diffusion tensor MRI with clinical correlations. Neurology 2001;56:926–33
    CrossRef
  39. 39.↵
    1. Hannoun S,
    2. Durand-Dubief F,
    3. Confavreux C,
    4. et al
    . Diffusion tensor-MRI evidence for extra-axonal neuronal degeneration in caudate and thalamic nuclei of patients with multiple sclerosis. AJNR Am J Neuroradiol 2012;33:1363–68
    Abstract/FREE Full Text
  40. 40.↵
    1. Zhao DD,
    2. Zhou HY,
    3. Wu QZ,
    4. et al
    . Diffusion tensor imaging characterization of occult brain damage in relapsing neuromyelitis optica using 3.0T magnetic resonance imaging techniques. Neuroimage 2012;59:3173–77
    CrossRefPubMed
  41. 41.↵
    1. Hasan KM,
    2. Walimuni IS,
    3. Abid H,
    4. et al
    . Multimodal quantitative magnetic resonance imaging of thalamic development and aging across the human lifespan: implications to neurodegeneration in multiple sclerosis. J Neurosci 2011;31:16826–32
    Abstract/FREE Full Text
  42. 42.↵
    1. Hughes EJ,
    2. Bond J,
    3. Svrckova P,
    4. et al
    . Regional changes in thalamic shape and volume with increasing age. Neuroimage 2012;63:1134–42
    CrossRefPubMedWeb of Science
  43. 43.↵
    1. Oreja-Guevara C,
    2. Rovaris M,
    3. Iannucci G,
    4. et al
    . Progressive gray matter damage in patients with relapsing-remitting multiple sclerosis: a longitudinal diffusion tensor magnetic resonance imaging study. Arch Neurol 2005;62:578–84
    CrossRefPubMedWeb of Science
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 35 (5)
American Journal of Neuroradiology
Vol. 35, Issue 5
1 May 2014
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Subcortical Deep Gray Matter Pathology in Patients with Multiple Sclerosis Is Associated with White Matter Lesion Burden and Atrophy but Not with Cortical Atrophy: A Diffusion Tensor MRI Study
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
R. Cappellani, N. Bergsland, B. Weinstock-Guttman, C. Kennedy, E. Carl, D.P. Ramasamy, J. Hagemeier, M.G. Dwyer, F. Patti, R. Zivadinov
Subcortical Deep Gray Matter Pathology in Patients with Multiple Sclerosis Is Associated with White Matter Lesion Burden and Atrophy but Not with Cortical Atrophy: A Diffusion Tensor MRI Study
American Journal of Neuroradiology May 2014, 35 (5) 912-919; DOI: 10.3174/ajnr.A3788

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Subcortical Deep Gray Matter Pathology in Patients with Multiple Sclerosis Is Associated with White Matter Lesion Burden and Atrophy but Not with Cortical Atrophy: A Diffusion Tensor MRI Study
R. Cappellani, N. Bergsland, B. Weinstock-Guttman, C. Kennedy, E. Carl, D.P. Ramasamy, J. Hagemeier, M.G. Dwyer, F. Patti, R. Zivadinov
American Journal of Neuroradiology May 2014, 35 (5) 912-919; DOI: 10.3174/ajnr.A3788
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • Innate Immune Cell-Related Pathology in the Thalamus Signals a Risk for Disability Progression in Multiple Sclerosis
  • Functional Brain Networks Are Altered in Type 2 Diabetes and Prediabetes: Signs for Compensation of Cognitive Decrements? The Maastricht Study
  • Longitudinal Mixed-Effect Model Analysis of the Association between Global and Tissue-Specific Brain Atrophy and Lesion Accumulation in Patients with Clinically Isolated Syndrome
  • Modeling the Relationship among Gray Matter Atrophy, Abnormalities in Connecting White Matter, and Cognitive Performance in Early Multiple Sclerosis
  • Crossref (43)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Connectivity‐based parcellation of the thalamus in multiple sclerosis and its implications for cognitive impairment: A multicenter study
    Alvino Bisecco, Maria A. Rocca, Elisabetta Pagani, Laura Mancini, Christian Enzinger, Antonio Gallo, Hugo Vrenken, Maria Laura Stromillo, Massimiliano Copetti, David L. Thomas, Franz Fazekas, Gioacchino Tedeschi, Frederik Barkhof, Nicola De Stefano, Massimo Filippi
    Human Brain Mapping 2015 36 7
  • Functional Brain Networks Are Altered in Type 2 Diabetes and Prediabetes: Signs for Compensation of Cognitive Decrements? The Maastricht Study
    Frank C.G. van Bussel, Walter H. Backes, Tamar M. van Veenendaal, Paul A.M. Hofman, Martin P.J. van Boxtel, Miranda T. Schram, Simone J.S. Sep, Pieter C. Dagnelie, Nicolaas Schaper, Coen D.A. Stehouwer, Joachim E. Wildberger, Jacobus F.A. Jansen
    Diabetes 2016 65 8
  • Deep grey matter MRI abnormalities and cognitive function in relapsing-remitting multiple sclerosis
    Laëtitia Debernard, Tracy R. Melzer, Sridhar Alla, Jane Eagle, Saskia Van Stockum, Charlotte Graham, Jonathan R. Osborne, John C. Dalrymple-Alford, David H. Miller, Deborah F. Mason
    Psychiatry Research: Neuroimaging 2015 234 3
  • Emerging and Evolving Topics in Multiple Sclerosis Pathogenesis and Treatments
    Shannon E. Dunn, Eva Gunde, Hyunwoo Lee
    2015 26
  • Altered Hippocampal White Matter Connectivity in Type 2 Diabetes Mellitus and Memory Decrements
    F. C. G. van Bussel, W. H. Backes, P. A. M. Hofman, M. P. J. van Boxtel, M. T. Schram, C. D. A. Stehouwer, J. E. Wildberger, J. F. A. Jansen
    Journal of Neuroendocrinology 2016 28 3
  • Morphological and Microstructural Changes of the Hippocampus in Early MCI: A Study Utilizing the Alzheimer's Disease Neuroimaging Initiative Database
    Peter Lee, Hojin Ryoo, Jinah Park, Yong Jeong
    Journal of Clinical Neurology 2017 13 2
  • Corticospinal tract integrity is related to primary motor cortex thinning in relapsing–remitting multiple sclerosis
    Niels Bergsland, Maria Marcella Laganà, Eleonora Tavazzi, Matteo Caffini, Paola Tortorella, Francesca Baglio, Giuseppe Baselli, Marco Rovaris
    Multiple Sclerosis Journal 2015 21 14
  • Immune reconstitution therapy (IRT) in multiple sclerosis: the rationale
    Dimitrios Karussis, Panayiota Petrou
    Immunologic Research 2018 66 6
  • High resolution in-vivo diffusion imaging of the human hippocampus
    Sarah Treit, Trevor Steve, Donald W. Gross, Christian Beaulieu
    NeuroImage 2018 182
  • Diffusion tensor imaging of the corticospinal tract and walking performance in multiple sclerosis
    Elizabeth A. Hubbard, Nathan C. Wetter, Bradley P. Sutton, Lara A. Pilutti, Robert W. Motl
    Journal of the Neurological Sciences 2016 363

More in this TOC Section

  • Fast Contrast-Enhanced 4D MRA and 4D Flow MRI Using Constrained Reconstruction (HYPRFlow): Potential Applications for Brain Arteriovenous Malformations
  • Multimodal CT Provides Improved Performance for Lacunar Infarct Detection
  • Optimal MRI Sequence for Identifying Occlusion Location in Acute Stroke: Which Value of Time-Resolved Contrast-Enhanced MRA?
Show more BRAIN

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire