Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Review ArticleReview Articles
Open Access

Principles and Limitations of Computational Algorithms in Clinical Diffusion Tensor MR Tractography

H.-W. Chung, M.-C. Chou and C.-Y. Chen
American Journal of Neuroradiology January 2011, 32 (1) 3-13; DOI: https://doi.org/10.3174/ajnr.A2041
H.-W. Chung
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M.-C. Chou
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C.-Y. Chen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Nucifora PG,
    2. Verma R,
    3. Lee SK,
    4. et al
    . Diffusion-tensor MR imaging and tractography: exploring brain microstructure and connectivity. Radiology 2007;245:367–84
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. Mukherjee P,
    2. Berman JI,
    3. Chung SW,
    4. et al
    . Diffusion tensor MR imaging and fiber tractography: theoretic underpinnings. AJNR Am J Neuroradiol 2008;29:632–41
    Abstract/FREE Full Text
  3. 3.↵
    1. Mukherjee P,
    2. Chung SW,
    3. Berman JI,
    4. et al
    . Diffusion tensor MR imaging and fiber tractography: technical considerations. AJNR Am J Neuroradiol 2008;29:843–52
    Abstract/FREE Full Text
  4. 4.↵
    1. Terajima K,
    2. Nakada T
    . EZ-tracing: a new ready-to-use algorithm for magnetic resonance tractography. J Neurosci Methods 2002;116:147–55
    CrossRefPubMed
  5. 5.↵
    1. Mori S,
    2. van Zijl PC
    . Fiber tracking: principles and strategies—a technical review. NMR Biomed 2002;15:468–80
    CrossRefPubMedWeb of Science
  6. 6.↵
    1. Oouchi H,
    2. Yamada K,
    3. Sakai K,
    4. et al
    . Diffusion anisotropy measurement of brain white matter is affected by voxel size: underestimation occurs in areas with crossing fibers. AJNR Am J Neuroradiol 2007;28:1102–06
    Abstract/FREE Full Text
  7. 7.↵
    1. Huang H,
    2. Zhang J,
    3. van Zijl PC,
    4. et al
    . Analysis of noise effects on DTI-based tractography using the brute-force and multi-ROI approach. Magn Reson Med 2004;52:559–65
    CrossRefPubMedWeb of Science
  8. 8.↵
    1. Mori S,
    2. Crain BJ,
    3. Chacko VP,
    4. et al
    . Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 1999;45:265–69
    CrossRefPubMedWeb of Science
  9. 9.↵
    1. Conturo T,
    2. Lori N,
    3. Cull T,
    4. et al
    . Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci U S A 1999;96:10422–27
    Abstract/FREE Full Text
  10. 10.↵
    1. Basser P,
    2. Pajevic S,
    3. Pierpaoli C,
    4. et al
    . In vivo fiber tractography using DT-MRI data. Magn Reson Med 2000;44:625–32
    CrossRefPubMedWeb of Science
  11. 11.↵
    1. Catani M,
    2. Howard RJ,
    3. Pajevic S,
    4. et al
    . Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage 2002;17:77–94
    CrossRefPubMedWeb of Science
  12. 12.↵
    1. Huang H,
    2. Zhang J,
    3. Jiang H,
    4. et al
    . DTI tractography based parcellation of white matter: application to the mid-sagittal morphology of corpus callosum. Neuroimage 2005;26:195–205
    CrossRefPubMedWeb of Science
  13. 13.↵
    1. Lazar M,
    2. Weinstein DM,
    3. Tsuruda JS,
    4. et al
    . White matter tractography using diffusion tensor deflection. Hum Brain Mapp 2003;18:306–21
    CrossRefPubMedWeb of Science
  14. 14.↵
    1. Chou MC,
    2. Wu ML,
    3. Chen CY,
    4. et al
    . Tensor deflection (TEND) tractography with adaptive subvoxel stepping. J Magn Reson Imaging 2006;24:451–58
    CrossRefPubMed
  15. 15.↵
    1. Hasan KM,
    2. Gupta RK,
    3. Santos RM,
    4. et al
    . Diffusion tensor fractional anisotropy of the normal-appearing seven segments of the corpus callosum in healthy adults and relapsing-remitting multiple sclerosis patients. J Magn Reson Imaging 2005;21:735–43
    CrossRefPubMedWeb of Science
  16. 16.↵
    1. Hofer S,
    2. Frahm J
    . Topography of the human corpus callosum revisited: comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. Neuroimage 2006;32:989–94
    CrossRefPubMedWeb of Science
  17. 17.↵
    1. Westin C,
    2. Maier S,
    3. Mamata H,
    4. et al
    . Processing and visualization for diffusion tensor MRI. Med Image Anal 2002;6:93–108
    CrossRefPubMedWeb of Science
  18. 18.↵
    1. Parker GJ,
    2. Stephan KE,
    3. Barker GJ,
    4. et al
    . Initial demonstration of in vivo tracing of axonal projections in the macaque brain and comparison with the human brain using diffusion tensor imaging and fast marching tractography. Neuroimage 2002;15:797–809
    CrossRefPubMedWeb of Science
  19. 19.↵
    1. Jackowski M,
    2. Kao CY,
    3. Qiu M,
    4. et al
    . White matter tractography by anisotropic wavefront evolution and diffusion tensor imaging. Med Image Anal 2005;9:427–40
    CrossRefPubMedWeb of Science
  20. 20.↵
    1. Ciccarelli O,
    2. Toosy AT,
    3. Parker GJ,
    4. et al
    . Diffusion tractography based group mapping of major white-matter pathways in the human brain. Neuroimage 2003;19:1545–55
    CrossRefPubMedWeb of Science
  21. 21.↵
    1. Staempfli P,
    2. Jaermann T,
    3. Crelier GR,
    4. et al
    . Resolving fiber crossing using advanced fast marching tractography based on diffusion tensor imaging. Neuroimage 2006;30:110–20
    CrossRefPubMed
  22. 22.↵
    1. Hageman NS,
    2. Toga AW,
    3. Narr KL,
    4. et al
    . A diffusion tensor imaging tractography algorithm based on Navier-Stokes fluid mechanics. IEEE Trans Med Imaging 2009;28:348–60
    CrossRefPubMed
  23. 23.↵
    1. Lifshits S,
    2. Tamir A,
    3. Assaf Y
    . Combinatorial fiber-tracking of the human brain. Neuroimage 2009;48:532–40
    CrossRefPubMed
  24. 24.↵
    1. Wu X,
    2. Xu Q,
    3. Xu L,
    4. et al
    . Genetic white matter fiber tractography with global optimization. J Neurosci Methods 2009;184:375–79
    CrossRefPubMed
  25. 25.↵
    1. Friman O,
    2. Farnebäck G,
    3. Westin CF
    . A Bayesian approach for stochastic white matter tractography. IEEE Trans Med Imaging 2006;25:965–78
    CrossRefPubMed
  26. 26.↵
    1. Jbabdi S,
    2. Woolrich MW,
    3. Andersson JL,
    4. et al
    . A Bayesian framework for global tractography. Neuroimage 2007;37:116–29
    CrossRefPubMedWeb of Science
  27. 27.↵
    1. Cheng P,
    2. Magnotta VA,
    3. Wu D,
    4. et al
    . Evaluation of the GTRACT diffusion tensor tractography algorithm: a validation and reliability study. Neuroimage 2006;31:1075–85
    CrossRefPubMedWeb of Science
  28. 28.↵
    1. Hagler DJ Jr.,
    2. Ahmadi ME,
    3. Kuperman J,
    4. et al
    . Automated white-matter tractography using a probabilistic diffusion tensor atlas: application to temporal lobe epilepsy. Hum Brain Mapp 2009;30:1535–47
    CrossRefPubMedWeb of Science
  29. 29.↵
    1. Morris DM,
    2. Embleton KV,
    3. Parker GJ
    . Probabilistic fibre tracking: differentiation of connections from chance events. Neuroimage 2008;42:1329–39. Epub 2008 Jun 20
    CrossRefPubMedWeb of Science
  30. 30.↵
    1. Chung S,
    2. Lu Y,
    3. Henry RG
    . Comparison of bootstrap approaches for estimation of uncertainties of DTI parameters. Neuroimage 2006;33:531–41
    CrossRefPubMed
  31. 31.↵
    1. Lazar M,
    2. Alexander AL
    . Bootstrap white matter tractography (BOOT-TRAC). Neuroimage 2005;24:524–32
    CrossRefPubMed
  32. 32.↵
    1. Jones DK
    . Tractography gone wild: probabilistic fibre tracking using the wild bootstrap with diffusion tensor MRI. IEEE Trans Med Imaging 2008;27:1268–74
    CrossRefPubMedWeb of Science
  33. 33.↵
    1. Berman JI,
    2. Chung S,
    3. Mukherjee P,
    4. et al
    . Probabilistic streamline q-ball tractography using the residual bootstrap. Neuroimage 2008;39:215–22
    CrossRefPubMedWeb of Science
  34. 34.↵
    1. Wedeen VJ,
    2. Wang RP,
    3. Schmahmann JD,
    4. et al
    . Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. Neuroimage 2008;41:1267–77
    CrossRefPubMedWeb of Science
  35. 35.↵
    1. Tuch DS
    . Q-ball imaging. Magn Reson Med 2004;52:1358–72
    CrossRefPubMedWeb of Science
  36. 36.↵
    1. Behrens TE,
    2. Johansen-Berg H,
    3. Jbabdi S,
    4. et al
    . Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? Neuroimage 2007;34:144–55
    CrossRefPubMedWeb of Science
  37. 37.↵
    1. Jian B,
    2. Vemuri BC
    . A unified computational framework for deconvolution to reconstruct multiple fibers from diffusion weighted MRI. IEEE Trans Med Imaging 2007;26:1464–71
    CrossRefPubMed
  38. 38.↵
    1. Wedeen VJ,
    2. Hagmann P,
    3. Tseng WY,
    4. et al
    . Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn Reson Med 2005;54:1377–86
    CrossRefPubMedWeb of Science
  39. 39.↵
    1. Chao YP,
    2. Cho KH,
    3. Yeh CH,
    4. et al
    . Probabilistic topography of human corpus callosum using cytoarchitectural parcellation and high angular resolution diffusion imaging tractography. Hum Brain Mapp 2009;30:3172–87
    CrossRefPubMedWeb of Science
  40. 40.↵
    1. Kreher BW,
    2. Schneider JF,
    3. Mader I,
    4. et al
    . Multitensor approach for analysis and tracking of complex fiber configurations. Magn Reson Med 2005;54:1216–25
    CrossRefPubMedWeb of Science
  41. 41.↵
    1. Chiang MC,
    2. Barysheva M,
    3. Shattuck DW,
    4. et al
    . Genetics of brain fiber architecture and intellectual performance. J Neurosci 2009;29:2212–24
    Abstract/FREE Full Text
  42. 42.↵
    1. Kuo LW,
    2. Chen JH,
    3. Wedeen VJ,
    4. et al
    . Optimization of diffusion spectrum imaging and q-ball imaging on clinical MRI system. Neuroimage 2008;41:7–18. Epub 2008 Feb 26
    CrossRefPubMedWeb of Science
  43. 43.↵
    1. Yamada K,
    2. Sakai K,
    3. Hoogenraad FG,
    4. et al
    . Multitensor tractography enables better depiction of motor pathways: initial clinical experience using diffusion-weighted MR imaging with standard b-value. AJNR Am J Neuroradiol 2007;28:1668–73
    Abstract/FREE Full Text
  44. 44.↵
    1. Behrens TE,
    2. Johansen-Berg H,
    3. Woolrich MW,
    4. et al
    . Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci 2003;6:750–57
    CrossRefPubMedWeb of Science
  45. 45.↵
    1. Behrens TE,
    2. Woolrich MW,
    3. Jenkinson M,
    4. et al
    . Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med 2003;50:1077–88
    CrossRefPubMedWeb of Science
  46. 46.↵
    1. Lin CP,
    2. Tseng WY,
    3. Cheng HC,
    4. et al
    . Validation of diffusion tensor magnetic resonance axonal fiber imaging with registered manganese-enhanced optic tracts. Neuroimage 2001;14:1035–47
    CrossRefPubMedWeb of Science
  47. 47.↵
    1. Hattingen E,
    2. Rathert J,
    3. Jurcoane A,
    4. et al
    . A standardised evaluation of pre-surgical imaging of the corticospinal tract: where to place the seed ROI. Neurosurg Rev 2009;32:445–56. Epub 2009 May 13
    CrossRefPubMedWeb of Science
  48. 48.↵
    1. Taoka T,
    2. Morikawa M,
    3. Akashi T,
    4. et al
    . Fractional anisotropy: threshold dependence in tract-based diffusion tensor analysis—evaluation of the uncinate fasciculus in Alzheimer disease. AJNR Am J Neuroradiol 2009;30:1700–03
    Abstract/FREE Full Text
  49. 49.↵
    1. Kunimatsu A,
    2. Aoki S,
    3. Masutani Y,
    4. et al
    . The optimal trackability threshold of fractional anisotropy for diffusion tensor tractography of the corticospinal tract. Magn Reson Med Sci 2004;3:11–17
    CrossRefPubMed
  50. 50.↵
    1. Bürgel U,
    2. Mädler B,
    3. Honey CR,
    4. et al
    . Fiber tracking with distinct software tools results in a clear diversity in anatomical fiber tract portrayal. Cen Eur Neurosurg 2009;70:27–35
    CrossRefPubMed
  51. 51.↵
    1. Kinoshita M,
    2. Yamada K,
    3. Hashimoto N,
    4. et al
    . Fiber-tracking does not accurately estimate size of fiber bundle in pathological condition: initial neurosurgical experience using neuronavigation and subcortical white matter stimulation. Neuroimage 2005;25:424–29
    CrossRefPubMedWeb of Science
  52. 52.↵
    1. Yamada M,
    2. Momoshima S,
    3. Masutani Y,
    4. et al
    . Diffusion-tensor neuronal fiber tractography and manganese-enhanced MR imaging of primate visual pathway in the common marmoset: preliminary results. Radiology 2008;249:855–64
    CrossRefPubMedWeb of Science
  53. 53.↵
    1. Ciccarelli O,
    2. Parker GJ,
    3. Toosy AT,
    4. et al
    . From diffusion tractography to quantitative white matter tract measures: a reproducibility study. Neuroimage 2003;18:348–59
    CrossRefPubMedWeb of Science
  54. 54.↵
    1. Saur D,
    2. Kreher BW,
    3. Schnell S,
    4. et al
    . Ventral and dorsal pathways for language. Proc Natl Acad Sci U S A 2008;105:18035–40
    Abstract/FREE Full Text
  55. 55.↵
    1. Yamada K
    . Diffusion tensor tractography should be used with caution. Proc Natl Acad Sci U S A 2009;106:E14
    FREE Full Text
  56. 56.↵
    1. Jeong HK,
    2. Anderson AW
    . Characterizing fiber directional uncertainty in diffusion tensor MRI. Magn Reson Med 2008;60:1408–21
    CrossRefPubMed
  57. 57.↵
    1. Dyrby TB,
    2. Søgaard LV,
    3. Parker GJ,
    4. et al
    . Validation of in vitro probabilistic tractography. Neuroimage 2007;37:1267–77
    CrossRefPubMedWeb of Science
  58. 58.↵
    1. Pujol S,
    2. Kikinis R,
    3. Gollub R
    . Lowering the barriers inherent in translating advances in neuroimage analysis to clinical research applications. Acad Radiol 2008;15:114–18
    CrossRefPubMed
  59. 59.↵
    1. Thuen M,
    2. Olsen O,
    3. Berry M,
    4. et al
    . Combination of Mn(2+)-enhanced and diffusion tensor MR imaging gives complementary information about injury and regeneration in the adult rat optic nerve. J Magn Reson Imaging 2009;29:39–51
    CrossRefPubMed
  60. 60.↵
    1. Descoteaux M,
    2. Deriche R,
    3. Knösche TR,
    4. et al
    . Deterministic and probabilistic tractography based on complex fibre orientation distributions. IEEE Trans Med Imaging 2009;28:269–86
    CrossRefPubMedWeb of Science
  61. 61.↵
    1. Poupon C,
    2. Rieul B,
    3. Kezele I,
    4. et al
    . New diffusion phantoms dedicated to the study and validation of high-angular-resolution diffusion imaging (HARDI) models. Magn Reson Med 2008;60:1276–83
    CrossRefPubMed
  62. 62.↵
    1. Coenen VA,
    2. Krings T,
    3. Mayfrank L,
    4. et al
    . Three-dimensional visualization of the pyramidal tract in a neuronavigation system during brain tumor surgery: first experiences and technical note. Neurosurgery 2001;49:86–92
    CrossRefPubMed
  63. 63.↵
    1. Gulati S,
    2. Berntsen EM,
    3. Solheim O,
    4. et al
    . Surgical resection of high-grade gliomas in eloquent regions guided by blood oxygenation level dependent functional magnetic resonance imaging, diffusion tensor tractography, and intraoperative navigated 3D ultrasound. Minim Invasive Neurosurg 2009;52:17–24
    CrossRefPubMed
  64. 64.↵
    1. Romano A,
    2. D'Andrea G,
    3. Minniti G,
    4. et al
    . Pre-surgical planning and MR-tractography utility in brain tumour resection. Eur Radiol 2009 Jun 16. [Epub ahead of print]
  65. 65.↵
    1. Mikuni N,
    2. Okada T,
    3. Enatsu R,
    4. et al
    . Clinical significance of preoperative fibre-tracking to preserve the affected pyramidal tracts during resection of brain tumours in patients with preoperative motor weakness. J Neurol Neurosurg Psychiatry 2007;78:716–21. Epub 2007 Mar 1
    Abstract/FREE Full Text
  66. 66.↵
    1. Okada T,
    2. Miki Y,
    3. Kikuta K,
    4. et al
    . Diffusion tensor fiber tractography for arteriovenous malformations: quantitative analyses to evaluate the corticospinal tract and optic radiation. AJNR Am J Neuroradiol 2007;28:1107–13
    Abstract/FREE Full Text
  67. 67.↵
    1. Kier EL,
    2. Staib LH,
    3. Davis LM,
    4. et al
    . Anatomic dissection tractography: a new method for precise MR localization of white matter tracts. AJNR Am J Neuroradiol 2004;25:670–76
    Abstract/FREE Full Text
  68. 68.↵
    1. Smith SM,
    2. Johansen-Berg H,
    3. Jenkinson M,
    4. et al
    . Acquisition and voxelwise analysis of multi-subject diffusion data with tract-based spatial statistics. Nat Protoc 2007;2:499–503
    CrossRefPubMedWeb of Science
  69. 69.↵
    1. Jones DK,
    2. Pierpaoli C
    . Confidence mapping in diffusion tensor magnetic resonance imaging tractography using a bootstrap approach. Magn Reson Med 2005;53:1143–49
    CrossRefPubMedWeb of Science
  70. 70.↵
    1. Wakana S,
    2. Caprihan A,
    3. Panzenboeck MM,
    4. et al
    . Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage 2007;36:630–44
    CrossRefPubMedWeb of Science
  71. 71.↵
    1. Nucifora PG,
    2. Verma R,
    3. Melhem ER,
    4. et al
    . Leftward asymmetry in relative fiber density of the arcuate fasciculus. Neuroreport 2005;16:791–94
    CrossRefPubMedWeb of Science
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 32 (1)
American Journal of Neuroradiology
Vol. 32, Issue 1
1 Jan 2011
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Principles and Limitations of Computational Algorithms in Clinical Diffusion Tensor MR Tractography
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
H.-W. Chung, M.-C. Chou, C.-Y. Chen
Principles and Limitations of Computational Algorithms in Clinical Diffusion Tensor MR Tractography
American Journal of Neuroradiology Jan 2011, 32 (1) 3-13; DOI: 10.3174/ajnr.A2041

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Principles and Limitations of Computational Algorithms in Clinical Diffusion Tensor MR Tractography
H.-W. Chung, M.-C. Chou, C.-Y. Chen
American Journal of Neuroradiology Jan 2011, 32 (1) 3-13; DOI: 10.3174/ajnr.A2041
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • Abbreviations
    • Diffusion Tensor Ellipsoid
    • Basic Principles of Tractography
    • More Advanced Tractography Algorithms
    • Limitations of Diffusion Tractography
    • Guidelines toward Applications in Clinical Neuroradiology
    • Conclusions
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • In vivo MRI measurement of microstructural constraints for direct delivery of therapeutics within the brain
  • Effects of diffusion signal modeling and segmentation approaches on subthalamic nucleus parcellation
  • Deep Learning Improves Pre-Surgical White Matter Visualization in Glioma Patients
  • Corticopallidal Connectome of the Globus Pallidus Externus in Humans: An Exploratory Study of Structural Connectivity Using Probabilistic Diffusion Tractography
  • Cerebral Diffusion Tensor MR Tractography in Tuberous Sclerosis Complex: Correlation with Neurologic Severity and Tract-Based Spatial Statistical Analysis
  • High Angular Resolution Diffusion Imaging Probabilistic Tractography of the Auditory Radiation
  • Recovery of White Matter Tracts in Regions of Peritumoral FLAIR Hyperintensity with Use of Restriction Spectrum Imaging
  • Direct Structural Connections between Voice- and Face-Recognition Areas
  • Acute Damage to the Posterior Limb of the Internal Capsule on Diffusion Tensor Tractography as an Early Imaging Predictor of Motor Outcome after Stroke
  • Crossref (79)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • White matter tractography for neurosurgical planning: A topography-based review of the current state of the art
    Walid I. Essayed, Fan Zhang, Prashin Unadkat, G. Rees Cosgrove, Alexandra J. Golby, Lauren J. O'Donnell
    NeuroImage: Clinical 2017 15
  • Imaging in Movement Disorders: Imaging Methodology and Applications in Parkinson's Disease
    Tayyabah Yousaf, George Dervenoulas, Marios Politis
    2018 141
  • Acute Damage to the Posterior Limb of the Internal Capsule on Diffusion Tensor Tractography as an Early Imaging Predictor of Motor Outcome after Stroke
    J. Puig, S. Pedraza, G. Blasco, J. Daunis-i-Estadella, F. Prados, S. Remollo, A. Prats-Galino, G. Soria, I. Boada, M. Castellanos, J. Serena
    American Journal of Neuroradiology 2011 32 5
  • Direct Structural Connections between Voice- and Face-Recognition Areas
    Helen Blank, Alfred Anwander, Katharina von Kriegstein
    The Journal of Neuroscience 2011 31 36
  • The Cortico-Basal Ganglia-Cerebellar Network: Past, Present and Future Perspectives
    Demetrio Milardi, Angelo Quartarone, Alessia Bramanti, Giuseppe Anastasi, Salvatore Bertino, Gianpaolo Antonio Basile, Piero Buonasera, Giorgia Pilone, Giuseppe Celeste, Giuseppina Rizzo, Daniele Bruschetta, Alberto Cacciola
    Frontiers in Systems Neuroscience 2019 13
  • Loss of White Matter Microstructural Integrity Is Associated with Adverse Neurological Outcome in Tuberous Sclerosis Complex
    Jurriaan M. Peters, Mustafa Sahin, Vanessa K. Vogel-Farley, Shafali S. Jeste, Charles A. Nelson, Matthew C. Gregas, Sanjay P. Prabhu, Benoit Scherrer, Simon K. Warfield
    Academic Radiology 2012 19 1
  • Six is enough? Comparison of diffusion parameters measured using six or more diffusion‐encoding gradient directions with deterministic tractography
    Catherine Lebel, Thomas Benner, Christian Beaulieu
    Magnetic Resonance in Medicine 2012 68 2
  • Cortical and Subcortical Connections of the Human Claustrum Revealed In Vivo by Constrained Spherical Deconvolution Tractography
    D. Milardi, P. Bramanti, C. Milazzo, G. Finocchio, A. Arrigo, G. Santoro, F. Trimarchi, A. Quartarone, G. Anastasi, M. Gaeta
    Cerebral Cortex 2015 25 2
  • Superficial white matter: A review on the dMRI analysis methods and applications
    Miguel Guevara, Pamela Guevara, Claudio Román, Jean-François Mangin
    NeuroImage 2020 212
  • High Angular Resolution Diffusion Imaging Probabilistic Tractography of the Auditory Radiation
    J.I. Berman, M.R. Lanza, L. Blaskey, J.C. Edgar, T.P.L. Roberts
    American Journal of Neuroradiology 2013 34 8

More in this TOC Section

  • An Atlas of Neonatal Neurovascular Imaging Anatomy as Depicted with Microvascular Imaging: The Intracranial Arteries
  • An Atlas of Neonatal Neurovascular Imaging Anatomy as Depicted with Microvascular Imaging: The Intracranial Veins
  • Clinical Translation of Hyperpolarized 13C Metabolic Probes for Glioma Imaging
Show more Review articles

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire