Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleResearch Perspectives
Open Access

Texture Analysis: A Review of Neurologic MR Imaging Applications

A. Kassner and R.E. Thornhill
American Journal of Neuroradiology May 2010, 31 (5) 809-816; DOI: https://doi.org/10.3174/ajnr.A2061
A. Kassner
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R.E. Thornhill
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Anderson RE,
    2. Hill RB,
    3. Key CR
    . The sensitivity and specificity of clinical diagnostics during five decades: toward an understanding of necessary fallibility. JAMA 1989;261:1610–17
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. Engelhardt HT Jr.,
    2. Callahan D
    1. Gorovitz S,
    2. MacIntyre A
    . Toward a theory of medical fallibility. In: Engelhardt HT Jr., Callahan D eds. The Foundation of Ethics and Its Relationship to Science. Hastings-on-Hudson, New York: The Hastings Center; 1976: 248– 74
  3. 3.↵
    1. Kaizer H
    . A quantification of textures on aerial photographs. Technical Note 121, AD 69484. Boston: Boston University Research Laboratory; 1955
  4. 4.↵
    1. Darling EM,
    2. Joseph RD
    . Pattern recognition from satellite altitudes. IEEE Trans Syst Sci Cybern 1968; 4: 38– 47
    CrossRef
  5. 5.↵
    1. Hall EE,
    2. Kruger RP,
    3. Dwyer SJ,
    4. et al
    . A survey of preprocessing and feature extraction techniques for radiographic images. IEEE Transactions on Computers 1971;20:1032–44
    CrossRef
  6. 6.↵
    1. Chien YP,
    2. Fu KS
    . Recognition of x-ray picture patterns. IEEE Trans Syst Man Cybern 1974;4:145–56
  7. 7.↵
    1. Lerski RA,
    2. Barnett E,
    3. Morley P,
    4. et al
    . Computer analysis of ultrasonic signals in diffuse liver disease. Ultrasound Med Biol 1979;5:341–50
    CrossRefPubMed
  8. 8.↵
    1. Tourassi GD
    . Journey toward computer-aided diagnosis: role of image texture analysis. Radiology 1999;213:317–20
    PubMedWeb of Science
  9. 9.↵
    1. Haralick RM,
    2. Shanmugam K,
    3. Dinstein I
    . Textural features for image classification. IEEE Tran Syst Man Cybern 1973;3:610–21
    CrossRef
  10. 10.↵
    1. Julesz B,
    2. Gilbert EN,
    3. Shepp LA
    . Inability of humans to discriminate between visual textures that agree in second-order statistics: revisited. Perception 1973;2:391–405
    CrossRefPubMedWeb of Science
  11. 11.↵
    1. Seppä M,
    2. Hämäläinen M
    . Visualizing human brain surface from T1-weighted MR images using texture-mapped triangle meshes. Neuroimage 2005;26:1–12
    PubMed
  12. 12.↵
    1. Mahmoud-Ghoneim D,
    2. Alkaabi MK,
    3. de Certaines JD,
    4. et al
    . The impact of image dynamic range on texture classification of brain white matter. BMC Med Imaging 2008;8:18
    CrossRefPubMed
  13. 13.↵
    1. Galloway MM
    . Texture analysis using gray level run lengths. Comp Graph Image Proc 1975;4:172–79
    CrossRef
  14. 14.↵
    1. Weszka JS,
    2. Dyer CR,
    3. Rosenfeld A
    . Comparative-study of texture measures for terrain classification. IEEE Trans Syst Man Cybern 1976;6:269–85
    Web of Science
  15. 15.↵
    1. Conners RW,
    2. Harlow CA
    . A theoretical comparison of texture algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 1980;2:204–22
    PubMed
  16. 16.↵
    1. Tang X
    . Texture information in run-length matrices. IEEE Trans Image Proc 1998;7:1602–09
    CrossRefPubMedWeb of Science
  17. 17.↵
    1. Lerski RA,
    2. Straughan K,
    3. Schad LR,
    4. et al
    . MR image texture analysis: an approach to tissue characterization. Magn Reson Imaging 1993;11:873–87
    CrossRefPubMed
  18. 18.↵
    1. Zhu H,
    2. Goodyear BG,
    3. Lauzon ML,
    4. et al
    . A new local multiscale Fourier analysis for medical imaging. Med Phys 2003;30:1134–41
    CrossRefPubMedWeb of Science
  19. 19.↵
    1. Mallat SG
    . A theory for multiresolution signal decomposition: the wavelet representation. EEE Transactions on Pattern Analysis and Machine Intelligence 1989;11:674–93
    CrossRef
  20. 20.↵
    1. Gabor D
    . Theory of communication. Part 3: frequency compression and expansion. J IEEE 1946;93(part III):445–57
  21. 21.↵
    1. Daubechies I
    . Ten Lectures on Wavelets. Philadelphia: SIAM; 1992
  22. 22.↵
    1. Stockwell RG
    . A basis for efficient representation of the S-transform. Digital Signal Processing 2007; 17: 371– 93
    CrossRef
  23. 23.↵
    1. Zhang J,
    2. Tong L,
    3. Wang L,
    4. et al
    . Texture analysis of multiple sclerosis: a comparative study. Magn Reson Imaging 2008;26:1160–66
    CrossRefPubMedWeb of Science
  24. 24.↵
    1. Mayerhoefer ME,
    2. Breitenseher MJ,
    3. Kramer J,
    4. et al
    . Texture analysis for tissue discrimination on T1-weighted MR images of the knee joint in a multicenter study: transferability of texture features and comparison of feature selection methods and classifiers. J Magn Reson Imaging 2005;22:674–80
    CrossRefPubMed
  25. 25.↵
    1. Kassner A,
    2. Liu F,
    3. Thornhill RE,
    4. et al
    . Prediction of hemorrhagic transformation in acute ischemic stroke using texture analysis of postcontrast T1-weighted MR images. J Magn Reson Imaging 2009;30:933–41
    CrossRefPubMed
  26. 26.↵
    1. Hsu S-Y
    . The Mahalanobis classifier with the generalized inverse approach for automated analysis of imagery texture data. Computer Graphics and Image Processing 1979;9:117–34
    CrossRef
  27. 27.↵
    1. Cover TM,
    2. Hart PE
    . Nearest neighbor pattern classification. IEEE Transactions on Information Theory 1967;13:21–27
    CrossRefWeb of Science
  28. 28.↵
    1. Georgiadis P,
    2. Cavouras D,
    3. Kalatzis I,
    4. et al
    . Enhancing the discrimination accuracy between metastases, gliomas and meningiomas on brain MRI by volumetric textural features and ensemble pattern recognition methods. Magn Reson Imaging 2009;27:120–30
    CrossRefPubMedWeb of Science
  29. 29.↵
    1. Tzacheva AA,
    2. Najarian K,
    3. Brockway JP
    . Breast cancer detection in gadolinium-enhanced MR images by static region descriptors and neural networks. J Magn Reson Imaging 2003;17:337–42
    CrossRefPubMed
  30. 30.↵
    1. Georgiadis P,
    2. Cavouras D,
    3. Kalatzis I,
    4. et al
    . Improving brain tumor characterization on MRI by probabilistic neural networks and non-linear transformation of textural features. Comput Methods Programs Biomed 2008;89:24–32
    CrossRefPubMedWeb of Science
  31. 31.↵
    1. Gibbs P,
    2. Turnbull LW
    . Textural analysis of contrast-enhanced MR images of the breast. Magn Reson Med 2003;50:92–98
    CrossRefPubMed
  32. 32.↵
    1. Jain AK,
    2. Duin RPW
    . Statistical pattern recognition: a review. IEEE Transactions on Pattern Analysis and Machine Intelligence 2000;22:4–37
    CrossRefWeb of Science
  33. 33.↵
    1. Schad LR,
    2. Blüml S,
    3. Zuna I
    . MR tissue characterization of intracranial tumors by means of texture analysis. Magn Reson Imaging 1993;11:889–96
    CrossRefPubMed
  34. 34.↵
    1. Earnest FT,
    2. Kelly PJ,
    3. Scheithauer BW,
    4. et al
    . Cerebral astrocytomas: histopathologic correlation of MR and CT contrast enhancement with stereotactic biopsy. Radiology 1988;166:823–27
    PubMedWeb of Science
  35. 35.↵
    1. Herlidou-Même S,
    2. Constans JM,
    3. Carsin B,
    4. et al
    . MRI texture analysis on texture test objects, normal brain and intracranial tumors. Magn Reson Imaging 2003;21:989–93
    CrossRefPubMedWeb of Science
  36. 36.↵
    1. Provenzale JM,
    2. Mukundan S,
    3. Barboriak DP
    . Diffusion-weighted and perfusion MR imaging for brain tumor characterization and assessment of treatment response. Radiology 2006;239:632–49
    CrossRefPubMedWeb of Science
  37. 37.↵
    1. Mahmoud-Ghoneim D,
    2. Toussaint G,
    3. Constans JM,
    4. et al
    . Three dimensional texture analysis in MRI: a preliminary evaluation in gliomas. Magn Reson Imaging 2003;21:983–87
    CrossRefPubMedWeb of Science
  38. 38.↵
    1. Brown R,
    2. Zlatescu M,
    3. Sijben A,
    4. et al
    . The use of magnetic resonance imaging to noninvasively detect genetic signatures in oligodendroglioma. Clin Cancer Res 2008;14:2357–62
    Abstract/FREE Full Text
  39. 39.↵
    1. Drabycz S,
    2. Roldán G,
    3. de Robles P,
    4. et al
    . An analysis of image texture, tumor location, and MGMT promoter methylation in glioblastoma using magnetic resonance imaging. Neuroimage 2009;49:1398–405.Epub 2009 Sep 28
    CrossRefPubMed
  40. 40.↵
    1. Mikulis DJ,
    2. Roberts TP
    . Neuro MR: protocols. J Magn Reson Imaging 2007;26:838–47
    CrossRefPubMed
  41. 41.↵
    1. Barkovich AJ,
    2. Kuzniecky RI
    . Neuroimaging of focal malformations of cortical development. J Clin Neurophysiol 1996;13:481–94
    PubMedWeb of Science
  42. 42.↵
    1. Avoli M,
    2. Bernasconi A,
    3. Mattia D,
    4. et al
    . Epileptiform discharges in the human dysplastic neocortex: in vitro physiology and pharmacology. Ann Neurol 1999;46:816–26
    CrossRefPubMedWeb of Science
  43. 43.↵
    1. Bernasconi A,
    2. Antel SB,
    3. Collins DL,
    4. et al
    . Texture analysis and morphological processing of magnetic resonance imaging assist detection of focal cortical dysplasia in extra-temporal partial epilepsy. Ann Neurol 2001;49:770–75
    CrossRefPubMedWeb of Science
  44. 44.↵
    1. Antel SB,
    2. Collins DL,
    3. Bernasconi N,
    4. et al
    . Automated detection of focal cortical dysplasia lesions using computational models of their MRI characteristics and texture analysis. Neuroimage 2003;19:1748–59
    CrossRefPubMed
  45. 45.↵
    1. Yu O,
    2. Mauss Y,
    3. Namer IJ,
    4. et al
    . Existence of contralateral abnormalities revealed by texture analysis in unilateral intractable hippocampal epilepsy. Magn Reson Imaging 2001;19:1305–10
    CrossRefPubMed
  46. 46.↵
    1. Sankar T,
    2. Bernasconi N,
    3. Kim H,
    4. et al
    . Temporal lobe epilepsy: differential pattern of damage in temporopolar cortex and white matter. Hum Brain Mapp 2008;29:931–44
    CrossRefPubMedWeb of Science
  47. 47.↵
    1. Bonilha L,
    2. Kobayashi E,
    3. Castellano G,
    4. et al
    . Texture analysis of hippocampal sclerosis. Epilepsia 2003;44:1546–50
    CrossRefPubMed
  48. 48.↵
    1. Freeborough PA,
    2. Fox NC
    . MR image texture analysis applied to the diagnosis and tracking of Alzheimer's disease. IEEE Trans Med Imaging 1998;17:475–79
    CrossRefPubMedWeb of Science
  49. 49.↵
    1. Weinshenker BG,
    2. Bass B,
    3. Rice GPA,
    4. et al
    . The natural history of multiple sclerosis: a geographically based study. I. Clinical course and disability. Brain 1989;112:133–46
    Abstract/FREE Full Text
  50. 50.↵
    1. Rovaris M,
    2. Confavreux C,
    3. Furlan R,
    4. et al
    . Secondary progressive multiple sclerosis: current knowledge and future challenges. Lancet Neurol 2006;5:343–54
    CrossRefPubMedWeb of Science
  51. 51.↵
    1. Wolinsky JS
    . MRI aspects of secondary progressive multiple sclerosis. Mult Scler 2002;8:85–87
    FREE Full Text
  52. 52.↵
    1. Yu O,
    2. Mauss Y,
    3. Zollner G,
    4. et al
    . Distinct patterns of active and non-active plaques using texture analysis on brain NMR images in multiple sclerosis patients: preliminary results. Magn Reson Imaging 1999;17:1261–67
    CrossRefPubMedWeb of Science
  53. 53.↵
    1. Li DK,
    2. Paty DW
    . Magnetic resonance imaging results of the PRISMS trial: a randomized, double-blind, placebo-controlled study of interferon-beta1a in relapsing-remitting multiple sclerosis—Prevention of Relapses and disability by Interferon-beta1a Subcutaneously in Multiple Sclerosis. Ann Neurol 1999;46:197–206
    CrossRefPubMedWeb of Science
  54. 54.↵
    1. Zhang Y,
    2. Zhu H,
    3. Mitchell JR,
    4. et al
    . T2 MRI texture analysis is a sensitive measure of tissue injury and recovery resulting from acute inflammatory lesions in multiple sclerosis. Neuroimage 2009;47:107–11
    CrossRefPubMedWeb of Science
  55. 55.↵
    1. Schmierer K,
    2. Scaravilli F,
    3. Altmann DR,
    4. et al
    . Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain. Ann Neurol 2004;56:407–15
    CrossRefPubMedWeb of Science
  56. 56.↵
    1. van Buchem MA,
    2. McGowan JC,
    3. Kolson DL,
    4. et al
    . Quantitative volumetric magnetization transfer analysis in multiple sclerosis: estimation of macroscopic and microscopic disease burden. Magn Reson Med 1996;36:632–36
    PubMedWeb of Science
  57. 57.↵
    1. Davies GR,
    2. Altmann DR,
    3. Hadjiprocopis A,
    4. et al
    . Increasing normal-appearing gray and white matter magnetization transfer ratio abnormality in early relapsing-remitting multiple sclerosis. J Neurol 2005;252:1037–44
    CrossRefPubMedWeb of Science
  58. 58.↵
    1. Tozer DJ,
    2. Marongiu G,
    3. Swanton JK,
    4. et al
    . Texture analysis of magnetization transfer maps from patients with clinically isolated syndrome and multiple sclerosis. J Magn Reson Imaging 2009;30:506–13
    CrossRefPubMedWeb of Science
  59. 59.↵
    1. Breij EC,
    2. Brink BP,
    3. Veerhuis R,
    4. et al
    . Homogeneity of active demyelinating lesions in established multiple sclerosis. Ann Neurol 2008;63:16–25
    CrossRefPubMedWeb of Science
  60. 60.↵
    1. Hacke W,
    2. Kaste M,
    3. Bluhmki E,
    4. et al
    . Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med 2008;359:1317–29
    CrossRefPubMedWeb of Science
  61. 61.↵
    1. Waubant E
    . Biomarkers indicative of blood-brain barrier disruption in multiple sclerosis. Dis Markers 2006;22:235–44
    CrossRefPubMed
  62. 62.↵
    1. Woods BJ,
    2. Clymer BD,
    3. Kurc T,
    4. et al
    . Malignant-lesion segmentation using 4D co-occurrence texture analysis applied to dynamic contrast-enhanced magnetic resonance breast image data. J Magn Reson Imaging 2007;25:495–501
    CrossRefPubMed
  63. 63.↵
    1. Roberts H,
    2. Roberts T,
    3. Brasch R,
    4. et al
    . Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast-enhanced MR imaging: correlation with histologic grade. AJNR Am J Neuroradiol 2000;21:891–99
    Abstract/FREE Full Text
  64. 64.↵
    1. Tofts P,
    2. Kermode A
    . Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 1991;17:357–67
    CrossRefPubMedWeb of Science
  65. 65.↵
    1. Larsson H,
    2. Stubgaard M,
    3. Frederiksen J,
    4. et al
    . Quantitation of blood–brain barrier defect by magnetic resonance imaging and gadolinium-DTPA in patients with multiple sclerosis and brain tumors. Magn Reson Med 1990;16:117–31
    CrossRefPubMed
  66. 66.↵
    1. Kassner A,
    2. Roberts T,
    3. Taylor K,
    4. et al
    . Prediction of hemorrhage in acute ischemic stroke using permeability MR imaging. AJNR Am J Neuroradiol 2005;26:2213–17
    Abstract/FREE Full Text
  67. 67.↵
    1. Kassner A,
    2. Roberts TPL,
    3. Moran B,
    4. et al
    . Recombinant tissue plasminogen activator increases blood-brain barrier disruption in acute ischemic stroke: an MR imaging permeability study. AJNR Am J Neuroradiol 2009;30:1864–69
    Abstract/FREE Full Text
  68. 68.↵
    1. Theocharakis P,
    2. Glotsos D,
    3. Kalatzis I,
    4. et al
    . Pattern recognition system for the discrimination of multiple sclerosis from cerebral microangiopathy lesions based on texture analysis of magnetic resonance images. Magn Reson Imaging 2009;27:417–22
    CrossRefPubMedWeb of Science
  69. 69.↵
    1. Zacharaki EI,
    2. Wang S,
    3. Chawla S,
    4. et al
    . Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magn Reson Med 2009;62:1609–18
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 31 (5)
American Journal of Neuroradiology
Vol. 31, Issue 5
1 May 2010
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Texture Analysis: A Review of Neurologic MR Imaging Applications
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
A. Kassner, R.E. Thornhill
Texture Analysis: A Review of Neurologic MR Imaging Applications
American Journal of Neuroradiology May 2010, 31 (5) 809-816; DOI: 10.3174/ajnr.A2061

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Texture Analysis: A Review of Neurologic MR Imaging Applications
A. Kassner, R.E. Thornhill
American Journal of Neuroradiology May 2010, 31 (5) 809-816; DOI: 10.3174/ajnr.A2061
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • Abbreviations
    • Strategies for Texture Analysis
    • The Potential Clinical Role for Texture Analysis
    • New Applications of Texture Analysis and Future Directions
    • Conclusions
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • Comprehensive Evaluation of Human Donor Liver Viability with Polarization-Sensitive Optical Coherence Tomography
  • Leveraging Hand-Crafted Radiomics on Multicenter FLAIR MRI for Predicting Disability Progression in People with Multiple Sclerosis
  • Deep-Learning Convolutional Neural Networks Accurately Classify Genetic Mutations in Gliomas
  • Radiomics in Brain Tumor: Image Assessment, Quantitative Feature Descriptors, and Machine-Learning Approaches
  • CT Texture Analysis Potentially Predicts Local Failure in Head and Neck Squamous Cell Carcinoma Treated with Chemoradiotherapy
  • Metrics and Textural Features of MRI Diffusion to Improve Classification of Pediatric Posterior Fossa Tumors
  • Crossref (287)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • A survey of MRI-based medical image analysis for brain tumor studies
    Stefan Bauer, Roland Wiest, Lutz-P Nolte, Mauricio Reyes
    Physics in Medicine and Biology 2013 58 13
  • Deep-Learning Convolutional Neural Networks Accurately Classify Genetic Mutations in Gliomas
    P. Chang, J. Grinband, B.D. Weinberg, M. Bardis, M. Khy, G. Cadena, M.-Y. Su, S. Cha, C.G. Filippi, D. Bota, P. Baldi, L.M. Poisson, R. Jain, D. Chow
    American Journal of Neuroradiology 2018 39 7
  • Radiomics in Brain Tumor: Image Assessment, Quantitative Feature Descriptors, and Machine-Learning Approaches
    M. Zhou, J. Scott, B. Chaudhury, L. Hall, D. Goldgof, K.W. Yeom, M. Iv, Y. Ou, J. Kalpathy-Cramer, S. Napel, R. Gillies, O. Gevaert, R. Gatenby
    American Journal of Neuroradiology 2018 39 2
  • Pre-processing of hyperspectral images. Essential steps before image analysis
    Maider Vidal, José Manuel Amigo
    Chemometrics and Intelligent Laboratory Systems 2012 117
  • Differentiating tumor recurrence from treatment necrosis: a review of neuro-oncologic imaging strategies
    Nishant Verma, Matthew C. Cowperthwaite, Mark G. Burnett, Mia K. Markey
    Neuro-Oncology 2013 15 5
  • Radiomics: a new application from established techniques
    Vishwa Parekh, Michael A. Jacobs
    Expert Review of Precision Medicine and Drug Development 2016 1 2
  • A computer vision approach for automated analysis and classification of microstructural image data
    Brian L. DeCost, Elizabeth A. Holm
    Computational Materials Science 2015 110
  • Can Quantitative CT Texture Analysis be Used to Differentiate Fat-poor Renal Angiomyolipoma from Renal Cell Carcinoma on Unenhanced CT Images?
    Taryn Hodgdon, Matthew D. F. McInnes, Nicola Schieda, Trevor A. Flood, Leslie Lamb, Rebecca E. Thornhill
    Radiology 2015 276 3
  • Neural Network Based Brain Tumor Detection Using Wireless Infrared Imaging Sensor
    P. Mohamed Shakeel, Tarek E. El. Tobely, Haytham Al-Feel, Gunasekaran Manogaran, S. Baskar
    IEEE Access 2019 7
  • Texture Analysis as Imaging Biomarker of Tumoral Response to Neoadjuvant Chemoradiotherapy in Rectal Cancer Patients Studied with 3-T Magnetic Resonance
    Carlo N. De Cecco, Balaji Ganeshan, Maria Ciolina, Marco Rengo, Felix G. Meinel, Daniela Musio, Francesca De Felice, Nicola Raffetto, Vincenzo Tombolini, Andrea Laghi
    Investigative Radiology 2015 50 4

More in this TOC Section

  • Hot Topics in Research: Preventive Neuroradiology in Brain Aging and Cognitive Decline
  • Evidence Levels for Neuroradiology Articles: Low Agreement among Raters
  • Imaging Biomarkers in Ischemic Stroke Clinical Trials: An Opportunity for Rigor
Show more RESEARCH PERSPECTIVES

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire