Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Review ArticleReview Articles
Open Access

Smart MR Imaging Agents Relevant to Potential Neurologic Applications

C.S. Bonnet and É. Tóth
American Journal of Neuroradiology March 2010, 31 (3) 401-409; DOI: https://doi.org/10.3174/ajnr.A1753
C.S. Bonnet
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
É. Tóth
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Merbach AE,
    2. Toth E
    . The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging. Chichester, UK: John Wiley & Sons; 2001
  2. 2.↵
    1. Caravan P,
    2. Ellison JJ,
    3. McMurry TJ,
    4. et al
    . Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev 1999;99:2293–352
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Allen MJ,
    2. Meade TJ
    . Magnetic resonance contrast agents for medical and molecular imaging. Met Ions Biol Syst 2004;42:1–38
    PubMedWeb of Science
  4. 4.↵
    1. Aime S,
    2. Delli Castelli D,
    3. Terreno E
    . Novel pH-reporter MRI contrast agents. Angew Chem Int Ed Engl 2002;41:4334–36
    CrossRefPubMed
  5. 5.↵
    1. Zhang S,
    2. Winter P,
    3. Wu K,
    4. et al
    . A novel europium(III)-based MRI contrast agent. J Am Chem Soc 2001;123:1517–18
    CrossRefPubMedWeb of Science
  6. 6.↵
    1. Woods M,
    2. Woessner DE,
    3. Sherry AD
    . Paramagnetic lanthanide complexes as PARACEST agents for medical imaging. Chem Soc Rev 2006;35:500–11
    CrossRefPubMed
  7. 7.↵
    1. Woessner DE,
    2. Zhang S,
    3. Merritt ME,
    4. et al
    . Numerical solution of the Bloch equations provides insights into the optimum design of PARACEST agents for MRI. Magn Reson Med 2005;53:790–99
    CrossRefPubMedWeb of Science
  8. 8.↵
    1. Sherry AD,
    2. Woods M
    . Chemical exchange saturation transfer contrast agents for magnetic resonance imaging. Annu Rev Biomed Eng 2008;10:391–411
    CrossRefPubMed
  9. 9.↵
    1. Hammoud DA,
    2. Hoffman JM,
    3. Pomer MG
    . Molecular neuroimaging: from conventional to emerging techniques. Radiology 2007;245:21–42
    CrossRefPubMed
  10. 10.↵
    1. Jasanoff A
    . MRI contrast agents for functional molecular imaging of brain activity. Curr Op Neurobiol 2007;17:593–600
    CrossRefPubMedWeb of Science
  11. 11.↵
    1. Que LE,
    2. Domaille DW,
    3. Chang CJ
    Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev 2008;108:1517–49
    CrossRefPubMedWeb of Science
  12. 12.↵
    1. Logothetis NK
    . What we can do and what we cannot do with fMRI. Nature 2008;453:869–78
    CrossRefPubMedWeb of Science
  13. 13.↵
    1. Waters J,
    2. Larkum M,
    3. Sakmann B,
    4. et al
    . Supralinear Ca2+ influx into dendritic tufts of layer 2/3 neocortical pyramidal neurons in vitro and in vivo. J Neurosci 2003;23:8558–67
    Abstract/FREE Full Text
  14. 14.↵
    1. Kerr JND,
    2. Greenberg D,
    3. Helmchen F
    . From the cover: imaging input and output of neocortical networks in vivo. Proc Natl Acad Sci U S A 2005;102:14063–68
    Abstract/FREE Full Text
  15. 15.↵
    1. Ohki K,
    2. Chung S,
    3. Ch'ng YH,
    4. et al
    . Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 2005;433:597–603. Epub 2005 Jan 19
    CrossRefPubMedWeb of Science
  16. 16.↵
    1. Somjen GG
    . Ions in the Brain: Normal Function, Seizures, and Stroke. Oxford, UK: Oxford University Press; 2004
  17. 17.↵
    1. Koller CW
    . Neuroprotective therapy for Parkinson's disease. Exp Neurol 1997;144:24–28
    CrossRefPubMed
  18. 18.↵
    1. Panov AV,
    2. Burke JR,
    3. Strittmatter WJ,
    4. et al
    . In vitro effects of polyglutamine tracts on Ca2+-dependent depolarization of rat and human mitochondria: relevance to Huntington's disease. Arch Biochem Biophys 2003;410:1–6
    CrossRefPubMedWeb of Science
  19. 19.↵
    1. Yan HD,
    2. Lim W,
    3. Lee KW,
    4. et al
    . Sera from amyotrophic lateral sclerosis patients reduce high-voltage activated Ca2+ currents in mice dorsal root ganglion neurons. Neurosci Lett 1997;235:69–72
    CrossRefPubMedWeb of Science
  20. 20.↵
    1. Jimerson DC,
    2. Post RM,
    3. Carman JS,
    4. et al
    . CSF calcium: clinical correlates in affective illness and schizophrenia. Biol Psychiatry 1979;14:37–51
    PubMedWeb of Science
  21. 21.↵
    1. Yarlagadda A
    . Role of calcium regulation in pathophysiology model of schizophrenia and possible interventions. Med Hypotheses 2002;58:182–86
    CrossRefPubMedWeb of Science
  22. 22.↵
    1. Gailly P
    . New aspects of calcium signaling in skeletal muscle cells: implications in Duchenne muscular dystrophy. Biochim Biophys Acta 2002;1600:38–44
    CrossRefPubMedWeb of Science
  23. 23.↵
    1. Lin YJ,
    2. Koretsky AP
    . Manganese ion enhances T1-weighted MRI during brain activation: an approach to direct imaging of brain function. Magn Reson Med 1997;38:378–88
    PubMedWeb of Science
  24. 24.↵
    1. Koretsky AP,
    2. Silva AC
    . Manganese-enhanced magnetic resonance imaging (MEMRI). NMR Biomed 2004;17:527–31
    CrossRefPubMedWeb of Science
  25. 25.↵
    1. Atanasijevic T,
    2. Shusteff M,
    3. Fam P,
    4. et al
    . Calcium-sensitive MRI contrast agents based on superparamagnetic iron oxide nanoparticles and calmodulin. Proc Natl Acad Sci U S A 2006;103:14707–712
    Abstract/FREE Full Text
  26. 26.↵
    1. Shapiro MG,
    2. Atanasijevic T,
    3. Faas H,
    4. et al
    . Dynamic imaging with MRI contrast agents: quantitative considerations. Magn Res Imaging 2006;24:449–62
    CrossRefPubMedWeb of Science
  27. 27.↵
    1. Li W,
    2. Fraser SE,
    3. Meade TJ
    . A calcium-sensitive magnetic resonance imaging contrast agent. J Am Chem Soc 1999;12:1413–14
  28. 28.↵
    1. Dhingra K,
    2. Fousková P,
    3. Angelovski G,
    4. et al
    . Towards extracellular Ca2+ sensing by MRI: synthesis and calcium-dependent 1H and 17O relaxation studies of two novel bismacrocyclic Gd3+ complexes. J Biol Inorg Chem 2008;13:35–46. Epub 2007 Sep 15
    CrossRefPubMed
  29. 29.↵
    1. Mishra A,
    2. Fousková P,
    3. Angelovski G,
    4. et al
    . Facile synthesis and relaxation properties of novel bispolyazamacrocyclic Gd(3+) complexes: an attempt towards calcium-sensitive MRI contrast agents. Inorg Chem 2008;47:1370–81. Epub 2008 Mar 28
    CrossRefPubMed
  30. 30.↵
    1. Angelovski G,
    2. Fousková P,
    3. Mamedov I,
    4. et al
    . Smart MRI agents sensing extracellular calcium fluctuations. Chembiochem 2008;9:1729–34
    CrossRefPubMed
  31. 31.↵
    1. Dhingra K,
    2. Maier ME,
    3. Beyerlein M,
    4. et al
    . Synthesis and characterization of a smart contrast agent sensitive to calcium. Chem Commun (Camb) 2008;3444–46. Epub 2008 Jun 4
  32. 32.↵
    1. Faller P,
    2. Hureau C
    . Bioinorganic chemistry of copper and zinc ions coordinated to amyloid-beta peptide. Dalton Trans 2009:1080–94. Epub 2008 Nov 26
  33. 33.↵
    1. Hanaoka K,
    2. Kikuchi K,
    3. Urano Y,
    4. et al
    . Selective sensing of zinc ions with a novel magnetic resonance imaging contrast agent. J Chem Soc Perkin Trans 2 2001:1840
  34. 34.↵
    1. Hanaoka K,
    2. Kikuchi K,
    3. Urano Y,
    4. et al
    . Design and synthesis of a novel magnetic resonance imaging contrast agent for selective sensing of zinc ion. Chem Biol 2002;9:1027–32
    CrossRefPubMedWeb of Science
  35. 35.↵
    1. Major JL,
    2. Boiteau RM,
    3. Meade TJ
    . Mechanisms of ZnII-activated resonance imaging agents. Inorg Chem 2008;47:10788–95. Epub 2008 Oct 18
    CrossRefPubMed
  36. 36.↵
    1. Major JL,
    2. Parigi G,
    3. Luchinat C,
    4. et al
    . The synthesis and in vitro testing of a zinc-activated MRI contrast agent. Proc Natl Acad Sci U S A 2007;104:13881–86
    Abstract/FREE Full Text
  37. 37.↵
    1. Trokowski R,
    2. Ren J,
    3. Kalman FK,
    4. et al
    . Selective sensing of zinc ions with a PARACEST contrast agent. Angew Chem Int Ed Engl 2005;44:6920–23
    CrossRefPubMed
  38. 38.↵
    1. Paris J,
    2. Gameiro C,
    3. Humblet V,
    4. et al
    . Auto-assembling of ditopic macrocyclic lanthanide chelates with transition-metal ions: rigid multimetallic high relaxivity contrast agents for magnetic resonance imaging. Inorg Chem 2006;45:5092–102
    CrossRefPubMed
  39. 39.↵
    1. Livramento JB,
    2. Toth E,
    3. Sour A,
    4. et al
    . High relaxivity confined to a small molecular space: a metallostar-based, potential MRI contrast agent. Angew Chem Int Ed Engl 2005;44:1480–84
    CrossRefPubMed
  40. 40.↵
    1. Livramento JB,
    2. Sour A,
    3. Borel A,
    4. et al
    . A starburst-shaped heterometallic compound incorporating six densely packed Gd(3+) ions. Chemistry 2006;12:989–1003
    CrossRefPubMed
  41. 41.↵
    1. Livramento JB,
    2. Weidensteiner C,
    3. Prata MI,
    4. et al
    . First in vivo MRI assessment of a self-assembled metallostar compound endowed with a remarkable high field relaxivity. Contrast Media Mol Imaging 2006;1:30–39
    CrossRefPubMed
  42. 42.↵
    1. Parac-Vogt TN,
    2. Vander Elst L,
    3. Kimpe K,
    4. et al
    . Pharmacokinetic and in vivo evaluation of a self-assembled gadolinium(III)-iron(II) contrast agent with high relaxivity. Contrast Med Mol Imaging 2006;1:267–78
    CrossRef
  43. 43.↵
    1. Jacques V,
    2. Desreux JF
    . New classes of MRI contrast agents. Top Curr Chem 2002;221:125–64
  44. 44.↵
    1. Aime S,
    2. Botta M,
    3. Fasano M,
    4. et al
    . Paramagnetic GdIII-FeIII heterobimetallic complexes of DTPA-bis-salicylamide. Spectrochimica Acta 1993;9:1315–22
  45. 45.↵
    1. Gaggelli E,
    2. Kozlowsky H,
    3. Valensin D,
    4. et al
    . Copper homeostasis and neurodegenerative disorders (Alzheimer's prion, and Parkinson's diseases and amyotrophic lateral sclerosis). Chem Rev 2006;106:1995–2044
    CrossRefPubMedWeb of Science
  46. 46.↵
    1. Que EL,
    2. Chang CJ
    . A smart magnetic resonance contrast agent for selective copper sensing. J Am Chem Soc 2006;128:15942–43
    CrossRefPubMedWeb of Science
  47. 47.↵
    1. Gillies RJ,
    2. Raghunand N,
    3. Karczmar GS,
    4. et al
    . MRI of the tumor microenvironment. J Magn Reson Imaging 2002;16:430–50
    CrossRefPubMedWeb of Science
  48. 48.↵
    1. Chesler M
    . Regulation and modulation of pH in the brain. Physiol Rev 2003;83:1183–221
    Abstract/FREE Full Text
  49. 49.↵
    1. Kalman FK,
    2. Woods M,
    3. Caravan P,
    4. et al
    . Potentiometric and relaxometric properties of a gadolinium-based MRI contrast agent for sensing tissue pH. Inorg Chem 2007;46:5260–70
    CrossRefPubMed
  50. 50.↵
    1. Aime S,
    2. Crich SG,
    3. Gianolio E,
    4. et al
    . High sensitivity lanthanide(III) based probes for MR-medical imaging. Coord Chem Rev 2006;250:1562–79
    CrossRef
  51. 51.↵
    1. Mikawa M,
    2. Miwa N,
    3. Brautigam M,
    4. et al
    . A pH-sensitive contrast agent for functional magnetic resonance imaging (MRI). Chem Lett 1998;7:693–94
  52. 52.↵
    1. Aime S,
    2. Crich SG,
    3. Botta M,
    4. et al
    . A macromolecular Gd(III) complex as pH-responsive relaxometric probe for MRI applications. Chem Commun 1999:1577–78
  53. 53.↵
    1. Lowe MP,
    2. Parker D,
    3. Reany O,
    4. et al
    . pH-dependent modulation of relaxivity and luminescence in macrocyclic gadolinium and europium complexes based on reversible intramolecular sulfonamide ligation. J Am Chem Soc 2001;123:7601–09
    CrossRefPubMedWeb of Science
  54. 54.↵
    1. Hovland R,
    2. Glogard C,
    3. Aasen AJ,
    4. et al
    . Gadolinium DO3A derivatives mimicking phospholipids; preparation and in vitro evaluation as pH responsive MRI contrast agents. J Chem Soc Perkin Trans 2 2001;6:929–33
  55. 55.↵
    1. Toth E,
    2. Bolskar RD,
    3. Borel A,
    4. et al
    . Water-soluble gadofullerenes: toward high-relaxivity, pH-responsive MRI contrast agents. J Am Chem Soc 2005;127:799–805
    CrossRefPubMedWeb of Science
  56. 56.↵
    1. Zhang S,
    2. Wu K,
    3. Sherry AD
    . A novel pH-sensitive MRI contrast agent. Angew Chem Int Ed Engl 1999;38:3192–94
    CrossRefPubMed
  57. 57.↵
    1. Raghunand N,
    2. Howison C,
    3. Sherry AD,
    4. et al
    . Renal and systemic pH imaging by contrast-enhanced MRI. Magn Reson Med 2003;49:249–57
    CrossRefPubMedWeb of Science
  58. 58.↵
    1. Garcia-Martin ML,
    2. Martinez GV,
    3. Raghunand N,
    4. et al
    . High-resolution pH(e) imaging of rat glioma using pH-dependent relaxivity. Magn Reson Med 2006;55:309–15
    CrossRefPubMed
  59. 59.↵
    1. Ali MM,
    2. Woods M,
    3. Caravan P,
    4. et al
    . Synthesis and relaxometric studies of a dendrimer-based pH-responsive MRI contrast agent. Chemistry 2008;14:7250–58
    CrossRefPubMed
  60. 60.↵
    1. Ward KM,
    2. Balaban RS
    . Determination of pH using water protons and chemical exchange dependent saturation transfer (CEST). Magn Reson Med 2000;44:799–802
    CrossRefPubMedWeb of Science
  61. 61.↵
    1. Aime S,
    2. Barge A,
    3. Delli Castelli D,
    4. et al
    . Paramagnetic lanthanide(III) complexes as pH-sensitive chemical exchange saturation transfer (CEST) contrast agents for MRI applications. Magn Reson Med 2002;47:639–48
    CrossRefPubMedWeb of Science
  62. 62.↵
    1. Terreno E,
    2. Delli Castelli D,
    3. Cravotto G,
    4. et al
    . Ln(III)-DOTAMGly complexes: a versatile series to assess the determinants of the efficacy of paramagnetic chemical exchange saturation transfer agents for magnetic resonance imaging applications Invest Radiol 2004;39:235–43
    CrossRefPubMed
  63. 63.↵
    1. Moats RA,
    2. Fraser SE,
    3. Meade TJ
    . A “smart” magnetic resonance imaging agent that reports on specific enzymatic activity. Angew Chem Int Ed Engl 1997;36:726–28
    CrossRefWeb of Science
  64. 64.↵
    1. Louie AY,
    2. Hüber MM,
    3. Ahresn ET,
    4. et al
    . In vivo visualization of gene expression using magnetic resonance imaging. Nat Biotechnol 2000;18:321–25
    CrossRefPubMedWeb of Science
  65. 65.↵
    1. Anelli PL,
    2. Bertini I,
    3. Fragai M,
    4. et al
    . Sulfonamide-functionalized gadolinium DTPA complexes as possible contrast agents for MRI: a relaxometric investigation. Eur J Inorg Chem 2000:625–30
  66. 66.↵
    1. Nivorozhkin AL,
    2. Kolodziej AF,
    3. Caravan P,
    4. et al
    . Enzyme-activated Gd(III) magnetic resonance imaging contrast agents with a prominent receptor-induced magnetization enhancement. Angew Chem Int Ed Engl 2001;40:2903–06
    CrossRefPubMed
  67. 67.↵
    1. Lauffer RB,
    2. McMurry TJ,
    3. Dunham SO,
    4. et al
    . Epix Medical Inc. Bioactivated diagnostic imaging contrast agents. Patent publication number WO9736619. 10 9, 1997
  68. 68.↵
    1. Mazooz G,
    2. Mehlman T,
    3. Lai TS,
    4. et al
    . Development of magnetic resonance imaging contrast material for in vivo mapping of tissue transglutaminase activity. Cancer Res 2005;65:1369–75
    Abstract/FREE Full Text
  69. 69.↵
    1. Shiftan L,
    2. Israely T,
    3. Cohen M,
    4. et al
    . Magnetic resonance imaging visualization of hyaluronidase in ovarian carcinoma. Cancer Res 2005;65:10316–23
    Abstract/FREE Full Text
  70. 70.↵
    1. Chen JW,
    2. Pham W,
    3. Weissleder R,
    4. et al
    . Human myeloperoxidase: a potential target for molecular MR imaging in atherosclerosis. Magn. Reson Med 2004;52:1021–28
    CrossRefPubMedWeb of Science
  71. 71.↵
    1. Querol M,
    2. Chen JW,
    3. Weissleder R,
    4. et al
    . DTPA-bisamide-based MR sensor agents for peroxidase imaging. Org Lett 2005;7:1719–22
    CrossRefPubMedWeb of Science
  72. 72.↵
    1. Duimstra JA,
    2. Femia FJ,
    3. Meade TJ
    . A gadolinium chelate for detection of beta-glucuronidase: a self-immolative approach. J Am Chem Soc 2005;127:12847–55
    CrossRefPubMed
  73. 73.↵
    1. Yoo B,
    2. Pagel MD
    . A PARACEST MRI contrast agent to detect enzyme activity. J Am Chem Soc 2006;128:14032–33
    CrossRefPubMed
  74. 74.↵
    1. Yoo B,
    2. Raam MS,
    3. Rosenblum RM,
    4. et al
    . Enzyme-responsive PARACEST MRI contrast agents: new biomedical imaging approach for studies of the proteasome. Contrast Media Mol Imaging 2007;2:189–98
    CrossRefPubMed
  75. 75.↵
    1. Chauvin T,
    2. Durand P,
    3. Bernier M,
    4. et al
    . Detection of enzymatic activity by PARACEST MRI: a general approach to target a large variety of enzymes. Angew Chem Int Ed Engl 2008;47:4370–72
    CrossRefPubMed
  76. 76.↵
    1. Raghunand N,
    2. Gatenby RA,
    3. Gillies RJ
    . Microenvironmental and cellular consequences of altered blood flow in tumours. Br J Radiol 2003;76:S11–S22
    Abstract/FREE Full Text
  77. 77.↵
    1. Rofstad EK
    . Microenvironment-induced cancer metastasis. Int J Radiat Biol 2000;76:589–605
    CrossRefPubMedWeb of Science
  78. 78.↵
    1. Raghunand N,
    2. Gillies RJ
    . pH and drug resistance in tumors. Drug Resist Updat 2000;3:39–47
    CrossRefPubMed
  79. 79.↵
    1. Matsumoto H,
    2. Inoue N,
    3. Takaoka H,
    4. et al
    . Depletion of antioxidants is associated with no-reflow phenomenon in acute myocardial infarction. Clin Cardiol 2004;27:466–70
    PubMedWeb of Science
  80. 80.↵
    1. Aime S,
    2. Botta M,
    3. Gianolio E,
    4. et al
    . A pO2-responsive MRI contrast agent based on the redox switch of manganese (II/III)-porphyrin complexes. Angew Chem Int Ed 2000;39:747–50
    CrossRefPubMed
  81. 81.↵
    1. Raghunand N,
    2. Jagadish B,
    3. Trouard TP,
    4. et al
    . Redox-sensitive contrast agents for MRI based on reversible binding of thiols to serum albumin. Magn Reson Med 2006;55:1272–80
    CrossRefPubMed
  82. 82.↵
    1. Ratnakar SJ,
    2. Woods M,
    3. Lubag AJ,
    4. et al
    . Modulation of water exchange in europium(III) DOTA-tetraamide complexes via electronic substituent effects. J Am Chem Soc 2008;130:6–7. Epub 2007 Dec 8
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 31 (3)
American Journal of Neuroradiology
Vol. 31, Issue 3
1 Mar 2010
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Smart MR Imaging Agents Relevant to Potential Neurologic Applications
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
C.S. Bonnet, É. Tóth
Smart MR Imaging Agents Relevant to Potential Neurologic Applications
American Journal of Neuroradiology Mar 2010, 31 (3) 401-409; DOI: 10.3174/ajnr.A1753

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Smart MR Imaging Agents Relevant to Potential Neurologic Applications
C.S. Bonnet, É. Tóth
American Journal of Neuroradiology Mar 2010, 31 (3) 401-409; DOI: 10.3174/ajnr.A1753
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • Abbreviations
    • Imaging Probes Responsive to Metal Ions
    • pH-Sensitive Probes
    • Enzyme-Activated Contrast Agents
    • Redox Responsive Agents
    • Conclusions
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref (20)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Activatable T 1 and T 2 Magnetic Resonance Imaging Contrast Agents
    Chuqiao Tu, Elizabeth A. Osborne, Angelique Y. Louie
    Annals of Biomedical Engineering 2011 39 4
  • On the synthesis of 1,4,7-tris(tert-butoxycarbonylmethyl)-1,4,7,10-tetraazacyclododecane
    Bhumasamudram Jagadish, Gayle L. Brickert-Albrecht, Gary S. Nichol, Eugene A. Mash, Natarajan Raghunand
    Tetrahedron Letters 2011 52 17
  • Mechanistic Studies of Gd3+‐Based MRI Contrast Agents for Zn2+ Detection: Towards Rational Design
    Célia S. Bonnet, Fabien Caillé, Agnès Pallier, Jean‐François Morfin, Stéphane Petoud, Franck Suzenet, Éva Tóth
    Chemistry – A European Journal 2014 20 35
  • Bioresponsive probes for molecular imaging: concepts and in vivo applications
    Sander M. J. van Duijnhoven, Marc S. Robillard, Sander Langereis, Holger Grüll
    Contrast Media & Molecular Imaging 2015 10 4
  • Main applications of hybrid PET‐MRI contrast agents: a review
    A. Kiani, A. Esquevin, N. Lepareur, P. Bourguet, F. Le Jeune, JY. Gauvrit
    Contrast Media & Molecular Imaging 2016 11 2
  • Optimization of rapid acquisition with relaxation enhancement (RARE) pulse sequence parameters for 19F‐MRI studies
    Alfonso Mastropietro, Elisabetta De Bernardi, Gian Luca Breschi, Ileana Zucca, Massimo Cametti, Chiara Dolores Soffientini, Marco de Curtis, Giancarlo Terraneo, Pierangelo Metrangolo, Roberto Spreafico, Giuseppe Resnati, Giuseppe Baselli
    Journal of Magnetic Resonance Imaging 2014 40 1
  • Luminescent lanthanide-binding peptides: sensitising the excited states of Eu(iii) and Tb(iii) with a 1,8-naphthalimide-based antenna
    Célia S. Bonnet, Marc Devocelle, Thorfinnur Gunnlaugsson
    Org. Biomol. Chem. 2012 10 1
  • Macrocyclic Gd3+ Complexes with Pendant Crown Ethers Designed for Binding Zwitterionic Neurotransmitters
    Fatima Oukhatar , Hervé Meudal, Céline Landon, Nikos K. Logothetis , Carlos Platas‐Iglesias, Goran Angelovski, Éva Tóth
    Chemistry – A European Journal 2015 21 31
  • Novel nanomedicine with a chemical-exchange saturation transfer effect for breast cancer treatment in vivo
    Yanlong Jia, Chaochao Wang, Jiehua Zheng, Guisen Lin, Dalong Ni, Zhiwei Shen, Baoxuan Huang, Yan Li, Jitian Guan, Weida Hong, Yuanfeng Chen, Renhua Wu
    Journal of Nanobiotechnology 2019 17 1
  • Activatable interpolymer complex-superparamagnetic iron oxide nanoparticles as magnetic resonance contrast agents sensitive to oxidative stress
    Eunsoo Yoo, Huaitzung A. Cheng, Lauren E. Nardacci, David J. Beaman, Charles T. Drinnan, Carmen Lee, Kenneth W. Fishbein, Richard G. Spencer, Omar Z. Fisher, Amber L. Doiron
    Colloids and Surfaces B: Biointerfaces 2017 158

More in this TOC Section

  • An Atlas of Neonatal Neurovascular Imaging Anatomy as Depicted with Microvascular Imaging: The Intracranial Arteries
  • An Atlas of Neonatal Neurovascular Imaging Anatomy as Depicted with Microvascular Imaging: The Intracranial Veins
  • Clinical Translation of Hyperpolarized 13C Metabolic Probes for Glioma Imaging
Show more Review articles

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire