Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

OtherReview Articles
Open Access

Conebeam CT of the Head and Neck, Part 1: Physical Principles

A.C. Miracle and S.K. Mukherji
American Journal of Neuroradiology June 2009, 30 (6) 1088-1095; DOI: https://doi.org/10.3174/ajnr.A1653
A.C. Miracle
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S.K. Mukherji
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. ↵
    Robb RA. The dynamic spatial reconstructor: an x-ray video-fluoroscopic CT scanner for dynamic volume imaging of moving organs. IEEE Trans Med Imaging 1982;1:22–33
    CrossRefPubMed
  2. ↵
    Orth RC, Wallace MJ, Kuo MD, for the Technology Assessment Committee of the Society of Interventional Radiology. C-arm cone-beam CT: general principles and technical considerations for use in interventional radiology. J Vasc Interv Radiol 2008;19:814–20. Epub 2008 Apr 23
    CrossRefPubMedWeb of Science
  3. ↵
    Dörfler A, Struffert T, Engelhorn T, et al. Rotational flat-panel computed tomography in diagnostic and interventional neuroradiology. Rofo 2008;180:891–98
    PubMedWeb of Science
  4. ↵
    Moore CJ, Am A, Marchant T, et al. Developments in and experience of kilovoltage x-ray cone beam image-guided radiotherapy. Br J Radiol 2006;79 (Spec No 1):S66–78
    Abstract/FREE Full Text
  5. ↵
    Hounsfield GN. Nobel Award address: computed medical imaging. Med Phys 1980;7:283–90
    CrossRefPubMedWeb of Science
  6. ↵
    Seeram E. Computed Tomography: Physical Principles, Clinical Applications, and Quality Control. Philadelphia: W.B. Saunders;2001 :2–3
  7. ↵
    Scarfe WC, Farman AG, Sukovic P. Clinical applications of cone-beam computed tomography in dental practice. J Can Dent Assoc 2006;72:75–80
    PubMed
  8. ↵
    Gupta R, Grasruck M, Suess C, et al. Ultra-high resolution flat-panel volume CT: fundamental principles, design architecture, and system characterization. Eur Radiol 2006;16:1191–205. Epub 2006 Mar 10
    CrossRefPubMedWeb of Science
  9. ↵
    Baba R, Konno Y, Ueda K, et al. Comparison of flat-panel detector and image-intensifier detector for cone-beam CT. Comput Med Imaging Graph 2002;26:153–58
    CrossRefPubMed
  10. ↵
    Feldkamp LA, Davis LC, Kress JW. Practical cone-beam algorithm. J Opt Soc Am 1984;A1:612–19
    CrossRefWeb of Science
  11. ↵
    Yan XH, Leahy RM. Derivation and analysis of a filtered backprojection algorithm for cone beam projection data. IEEE Trans Med Imaging 1991;10:462–72
    CrossRefPubMed
  12. ↵
    Kudo H, Noo F, Defrise M, et al. New super-short-scan algorithm for fan-beam and cone-beam reconstruction. IEEE NSS-MIC 2002;902–06
  13. ↵
    Gupta R, Bartling SH, Basu SK, et al. Experimental flat-panel high-spatial-resolution volume CT of the temporal bone. AJNR Am J Neuroradiol 2004;25:1417–24
    Abstract/FREE Full Text
  14. ↵
    Siewerdsen JH, Jaffray DA. Cone-beam computed tomography with a flat-panel imager: magnitude and effects of x-ray scatter. Med Phys 2001;28:220–31
    CrossRefPubMedWeb of Science
  15. ↵
    Graham SA, Moseley DJ, Siewerdsen JH, et al. Compensators for dose and scatter management in cone-beam computed tomography. Med Phys 2007;34:2691–703
    CrossRefPubMed
  16. ↵
    Siewerdsen JH, Moseley DJ, Bakhtiar B, et al. The influence of antiscatter grids on soft-tissue detectability in cone-beam computed tomography with flat-panel detectors. Med Phys 2004;31:3506–20
    CrossRefPubMed
  17. ↵
    Ning R, Chen B, Yu R, et al. Flat panel detector-based cone-beam volume CT angiography imaging: system evaluation. IEEE Trans Med Imaging 2000;19:949–63
    CrossRefPubMedWeb of Science
  18. ↵
    Fahrig R, Dixon R, Payne T, et al. Dose and image quality for a cone-beam C-arm CT system. Med Phys 2006;33:4541–50
    CrossRefPubMedWeb of Science
  19. ↵
    Neitzel U. Grids or air gaps for scatter reduction in digital radiography: a model calculation. Med Phys 1992;19:475–81
    CrossRefPubMedWeb of Science
  20. ↵
    Nickoloff EL, Lu ZF, Dutta A, et al. Influence of flat-panel fluoroscopic equipment variables on cardiac radiation doses. Cardiovasc Intervent Radiol 2007;30:169–76
    CrossRefPubMedWeb of Science
  21. ↵
    Wiegert J, Bertram M, Schafer D, et al. Soft tissue contrast resolution within the head of human cadaver by means of flat detector based cone-beam CT. Proc SPIE 2004;5368:330–37
    CrossRef
  22. ↵
    Jarry G, Graham SA, Moseley DJ, et al. Characterization of scattered radiation in kV CBCT images using Monte Carlo simulations. Med Phys 2006;33:4320–29
    CrossRefPubMed
  23. Siewerdsen JH, Daly MJ, Bakhtiar B, et al. A simple, direct method for x-ray scatter estimation and correction in digital radiography and cone-beam CT. Med Phys 2006;33:187–97
    CrossRefPubMed
  24. ↵
    Ning R, Tang X, Conover D. X-ray scatter correction algorithm for cone beam CT imaging. Med Phys 2004;31:1195–202
    CrossRefPubMed
  25. ↵
    Malusek A, Sandborg M, Carlsson GA. Simulation of scatter in cone beam CT: effect on projection image quality. Proc SPIE 2003;5030:740–51
    CrossRef
  26. ↵
    Cowen AR, Kengyelics SM, Davies AG. Solid-state, flat-panel, digital radiography detectors and their physical imaging characteristics. Clin Radiol 2008;63:487–98. Epub 2008 Jan 31
    CrossRefPubMed
  27. ↵
    Roos PG, Colbeth RE, Mollov I, et al. Multiple gain ranging readout method to extend the dynamic range of amorphous silicon flat panel imagers. Proc SPIE 2004;5368:139–49
    CrossRef
  28. ↵
    Akpek S, Brunner T, Benndorf G, et al. Three-dimensional imaging and cone beam volume CT in C-arm angiography with flat panel detector. Diagn Interv Radiol 2005;11:10–13
    PubMed
  29. ↵
    Cowen AR, Davies AG, Sivananthan MU. The design and imaging characteristics of dynamic, solid-state, flat-panel x-ray image detectors for digital fluoroscopy and fluorography. Clin Radiol 2008;63:1073–85
    CrossRefPubMed
  30. ↵
    Bacher K, Smeets P, Vereecken L, et al. Image quality and radiation dose on digital chest imaging: comparison of amorphous silicon and amorphous selenium flat-panel systems. AJR Am J Roentgenol 2006;187:630–37
    CrossRefPubMed
  31. Bacher K, Smeets P, Bonnarens K, et al. Dose reduction in patients undergoing chest imaging: digital amorphous silicon flat-panel detector radiography versus conventional film-screen radiography and phosphor-based computed radiography. AJR Am J Roentgenol 2003;181:923–39
    CrossRefPubMedWeb of Science
  32. ↵
    Völk M, Paetzel C, Angele P, et al. Routine skeleton radiography using a flat-panel detector: image quality and clinical acceptance at 50% dose reduction. Invest Radiol 2003;38:230–35
    CrossRefPubMed
  33. ↵
    Farman TT, Vandre RH, Pajak JC, et al. Effects of scintillator on the detective quantum efficiency (DQE) of a digital imaging system. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006;101:219–23. Epub 2005 Nov 11
    CrossRefPubMed
  34. ↵
    Bauhs JA, Vrieze TJ, Primak AN, et al. CT dosimetry: comparison of measurement techniques and devices. Radiographics 2008;28:245–53
    CrossRefPubMedWeb of Science
  35. ↵
    Mori S, Endo M, Nishizawa K, et al. Enlarged longitudinal dose profiles in cone-beam CT and the need for modified dosimetry. Med Phys 2005;32:1061–69
    CrossRefPubMedWeb of Science
  36. ↵
    Kyriakou Y, Deak P, Langner O, et al. Concepts for dose determination in flat-detector CT. Phys Med Biol 2008;53:3551–66. Epub 2008 Jun 13
    CrossRefPubMedWeb of Science
  37. ↵
    Peltonen LI, Aarnisalo AA, Kortesniemi MK, et al. Limited cone-beam computed tomography imaging of the middle ear: a comparison with multislice helical computed tomography. Acta Radiol 2007;48:207–12
    CrossRefPubMed
  38. ↵
    Daly MJ, Siewerdsen JH, Moseley DJ, et al. Intraoperative cone-beam CT for guidance of head and neck surgery: assessment of dose and image quality using a C-arm prototype. Med Phys 2006;33:3767–80
    CrossRefPubMedWeb of Science
  39. ↵
    Jackman AH, Palmer JN, Chiu AG, et al. Use of intraoperative CT scanning in endoscopic sinus surgery: a preliminary report. Am J Rhinol 2008;22:170–74
    CrossRefPubMed
  40. ↵
    Alspaugh J, Christodoulou E, Goodsitt M, et al. Dose and image quality of flat-panel detector volume computed tomography for sinus imaging. Med Phys 2007;34:2634
  41. ↵
    Silva MA, Wolf U, Heinicke F, et al. Cone-beam computed tomography for routine orthodontic treatment planning: a radiation dose evaluation. Am J Orthod Dentofacial Orthop 2008;133:640.e1–5
    CrossRefPubMed
  42. Loubele, M, Bogaerts R, Van Dijck E, et al. Comparison between effective radiation dose of CBCT and MSCT scanners for dentomaxillofacial applications. Eur J Radiol 2008 Jul 16. [Epub ahead of print]
  43. ↵
    Ludlow JB, Ivanovic M. Comparative dosimetry of dental CBCT devices and 64-slice CT for oral and maxillofacial radiology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;106:106–14. Epub 2008 May 27
    CrossRefPubMedWeb of Science
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 30 (6)
American Journal of Neuroradiology
Vol. 30, Issue 6
June 2009
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Conebeam CT of the Head and Neck, Part 1: Physical Principles
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
A.C. Miracle, S.K. Mukherji
Conebeam CT of the Head and Neck, Part 1: Physical Principles
American Journal of Neuroradiology Jun 2009, 30 (6) 1088-1095; DOI: 10.3174/ajnr.A1653

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Conebeam CT of the Head and Neck, Part 1: Physical Principles
A.C. Miracle, S.K. Mukherji
American Journal of Neuroradiology Jun 2009, 30 (6) 1088-1095; DOI: 10.3174/ajnr.A1653
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • Fundamental Principles of CT
    • CBCT
    • Data Acquisition
    • FPDs
    • Reconstruction Algorithms
    • Image Quality
    • Dose
    • Conclusions
    • Acknowledgments
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Principles, techniques and applications of high resolution cone beam CT angiography in the neuroangio suite
  • Reply:
  • Recalling the Usefulness of Conebeam CT in Temporal Bone Imaging: Higher Resolution with Lower Radiation Dose
  • Principles, techniques and applications of high resolution cone beam CT angiography in the neuroangio suite
  • Diagnostic Performance of Conebeam CT Pixel Values in Active Fenestral Otosclerosis
  • Cone-beam CT versus Multidetector CT in Postoperative Cochlear Implant Imaging: Evaluation of Image Quality and Radiation Dose
  • Cross-Sectional Imaging of Third Molar-Related Abnormalities
  • Integrating 3D Rotational Angiography into Gamma Knife Planning
  • Accuracy of flat panel detector CT with integrated navigational software with and without MR fusion for single-pass needle placement
  • Dental Flat Panel Conebeam CT in the Evaluation of Patients with Inflammatory Sinonasal Disease: Diagnostic Efficacy and Radiation Dose Savings
  • "Black Bone" MRI: a potential non-ionizing method for three-dimensional cephalometric analysis--a preliminary feasibility study
  • Assessment of buccal marginal alveolar peri-implant and periodontal defects using a cone beam CT system with and without the application of metal artefact reduction mode
  • Bowtie filtration for dedicated cone beam CT of the head and neck: a simulation study
  • Cone beam CT image artefacts related to head motion simulated by a robot skull: visual characteristics and impact on image quality
  • Correlation of panoramic radiography and cone beam CT findings in the assessment of the relationship between impacted mandibular third molars and the mandibular canal
  • Metal artefact reduction with cone beam CT: an in vitro study
  • A suggested technique for the application of the cone beam computed tomography periapical index
  • Transcranial Access Using Fluoroscopic Flat Panel Detector CT Navigation
  • The role of cone beam computed tomography in the management of unfavourable fractures following sagittal split mandibular osteotomy
  • Intraorbital access using fluoroscopic flat panel detector CT navigation and three-dimensional MRI overlay
  • Crossref (277)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Generating synthesized computed tomography (CT) from cone-beam computed tomography (CBCT) using CycleGAN for adaptive radiation therapy
    Xiao Liang, Liyuan Chen, Dan Nguyen, Zhiguo Zhou, Xuejun Gu, Ming Yang, Jing Wang, Steve Jiang
    Physics in Medicine & Biology 2019 64 12
  • Modern dental imaging: a review of the current technology and clinical applications in dental practice
    Bart Vandenberghe, Reinhilde Jacobs, Hilde Bosmans
    European Radiology 2010 20 11
  • Dental cone beam CT: A review
    Timo Kiljunen, Touko Kaasalainen, Anni Suomalainen, Mika Kortesniemi
    Physica Medica 2015 31 8
  • Considerations in the use of cone-beam computed tomography for buccal bone measurements
    Aaron Dean Molen
    American Journal of Orthodontics and Dentofacial Orthopedics 2010 137 4
  • Metal artefact reduction with cone beam CT: anin vitrostudy
    BB Bechara, WS Moore, CA McMahan, M Noujeim
    Dentomaxillofacial Radiology 2012 41 3
  • Advances in Computed Tomography Imaging Technology
    Daniel Thomas Ginat, Rajiv Gupta
    Annual Review of Biomedical Engineering 2014 16 1
  • Magnetic Particle Imaging: Visualization of Instruments for Cardiovascular Intervention
    Julian Haegele, Jürgen Rahmer, Bernhard Gleich, Jörn Borgert, Hanne Wojtczyk, Nikolaos Panagiotopoulos, Thorsten M. Buzug, Jörg Barkhausen, Florian M. Vogt
    Radiology 2012 265 3
  • Dental cone beam CT: An updated review
    Touko Kaasalainen, Marja Ekholm, Teemu Siiskonen, Mika Kortesniemi
    Physica Medica 2021 88
  • A Comparison of Maxillofacial CBCT and Medical CT
    Christos Angelopoulos, William C. Scarfe, Allan G. Farman
    Atlas of the Oral and Maxillofacial Surgery Clinics 2012 20 1
  • Spinal Navigation and Imaging: History, Trends, and Future
    Patrick A. Helm, Robert Teichman, Steven L. Hartmann, David Simon
    IEEE Transactions on Medical Imaging 2015 34 8

More in this TOC Section

  • An Atlas of Neonatal Neurovascular Imaging Anatomy as Depicted with Microvascular Imaging: The Intracranial Arteries
  • An Atlas of Neonatal Neurovascular Imaging Anatomy as Depicted with Microvascular Imaging: The Intracranial Veins
  • Clinical Translation of Hyperpolarized 13C Metabolic Probes for Glioma Imaging
Show more Review Articles

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire