Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • Advancing NeuroMRI with High-Relaxivity Contrast Agents
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • Advancing NeuroMRI with High-Relaxivity Contrast Agents
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates


Improved Turnaround Times | Median time to first decision: 12 days

OtherReview Articles

Diffusion MR Imaging in Multiple Sclerosis: Technical Aspects and Challenges

E. Pagani, R. Bammer, M.A. Horsfield, M. Rovaris, A. Gass, O. Ciccarelli and M. Filippi
American Journal of Neuroradiology March 2007, 28 (3) 411-420;
E. Pagani
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R. Bammer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M.A. Horsfield
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Rovaris
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Gass
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
O. Ciccarelli
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Filippi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. ↵
    Rovaris M, Gass A, Bammer R, et al. Diffusion MRI in multiple sclerosis. Neurology 2005;65:1526–32
    Abstract/FREE Full Text
  2. Horsfield MA, and Jones DK. Applications of diffusion-weighted and diffusion tensor MRI to white matter diseases—a review. NMR Biomed 2002;15:570–77
    CrossRefPubMedWeb of Science
  3. ↵
    Sotak CH. The role of diffusion tensor imaging in the evaluation of ischemic brain injury—a review. NMR Biomed 2002;15:561–69
    CrossRefPubMedWeb of Science
  4. ↵
    Carr HY, Purcell EM. Effects of diffusion on free precession in nuclear. Phys Rev 1954;94:630–38
    CrossRefWeb of Science
  5. ↵
    Torrey HC. Bloch equations with diffusion terms. Phys Rev 1956;104:563–65
    CrossRefWeb of Science
  6. ↵
    Stejskal EO, Tanner JE. Spin diffusion measurements: spin echoes in the presence of a time-dependent filed gradient. J Chem Phys 1965;42:288–92
    CrossRefWeb of Science
  7. ↵
    Moseley ME Cohen Y, Kucharczyk J. Diffusion-weighted MRI imaging of anisotropic water diffusion in cat central nervous system. Radiology 1990;176:439–46
    PubMedWeb of Science
  8. ↵
    Chenevert TL, Brunberg JA, Pipe JG. Anisotropic diffusion within human white matter: demonstration with NMR in vivo. Radiology 1990;177:401–05
    PubMedWeb of Science
  9. ↵
    Beaulieu C. The basis of anisotropy water diffusion in the nervous system—a review. NMR in Biomed 2002;15:435–55
    CrossRef
  10. ↵
    Crank J. The Mathematics of Diffusion. Oxford, UK: Oxford University Press;1975
  11. ↵
    Frank LR. Characterization of anisotropy in high angular resolution diffusion-weighted MRI. Magn Reson Med 2002;47:1083–99
    CrossRefPubMedWeb of Science
  12. ↵
    Basser PJ, Pierpaoli C. Microstructural and physiological features of tissues elucidated by quantitative diffusion tensor MRI. J Magn Reson B 1996;111:209–19
    CrossRefPubMedWeb of Science
  13. ↵
    Omerod IE, Miller DH, McDonald WI, et al. The role of NMR imaging in the assessment of multiple sclerosis and isolated neurological lesions. A quantitative study. Brain 1987;110:1579–616
    Abstract/FREE Full Text
  14. Newcombe J, Hawkins CP, Henderson CL, et al. Histopathology of multiple sclerosis lesions detected by magnetic resonance imaging in unfixed post-mortem central nervous system tissue. Brain 1991;114:1013–23
    Abstract/FREE Full Text
  15. Barnes D, Munro PM, Youl BD, et al. The longstanding MS lesion. A quantitative MRI and electron microscopic study. Brain 1991;114:1271–80
    Abstract/FREE Full Text
  16. Estes ML, Rudick RA, Barnett GH, et al. Stereotactic biopsy of an active multiple sclerosis lesion. Immunocytochemical analysis and neuropathological correlation with magnetic resonance imaging. Arch Neurol 1990;47:1299–303
    CrossRefPubMedWeb of Science
  17. ↵
    Katz D, Taubenberger JK, Cannella B, et al. Correlations between magnetic resonance imaging findings and lesion development in chronic, active multiple sclerosis. Ann Neurol 1993;34:661–69
    CrossRefPubMedWeb of Science
  18. ↵
    van Walderveen MA, Barkhof F, Pouwels PJ, et al. Neuronal damage in T1-hypointense multiple sclerosis lesions demonstrated in vivo using proton magnetic resonance spectroscopy. Ann Neurol 1999;46:79–87
    CrossRefPubMedWeb of Science
  19. ↵
    Miller DH, Thompson AJ, Filippi M. Magnetic resonance studies of abnormalities in the normal appearing white matter and grey matter in multiple sclerosis. J Neurol 2003;250:1407–19
    CrossRefPubMedWeb of Science
  20. ↵
    Mottershead JP, Schmierer K, Clemence M, et al. High field MRI correlates of myelin content and axonal density in multiple sclerosis. A post-mortem study of the spinal cord. J Neurol 2003;250:1293–301
    CrossRefPubMedWeb of Science
  21. ↵
    Basser PJ, Mattiello J, LeBihan D. Estimation of the effective self-diffusion tensor from the NMR echo. J Magn Reson B 1994;103:247–54
    CrossRefPubMedWeb of Science
  22. ↵
    Jones DK, Horsfield MA, Simmons A. Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn Reson Med 1999;42:515–25
    CrossRefPubMedWeb of Science
  23. ↵
    Jones DK. The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a Monte Carlo study. Magn Reson Med 2004;5:807–15
  24. ↵
    Batchelor PG, Atkinson D, Hill DL, et al. Anisotropic noise propagation in diffusion tensor MRI sampling schemes. Magn Reson Med 2003;49:1143–51
    CrossRefPubMedWeb of Science
  25. ↵
    Mansfield P, Maudsley AA. Planar spin imaging by NMR. J Magn Reson 1977;27:101–19
  26. ↵
    Jones DK, Pierpaoli C. Contribution of cardiac pulsation to variability of tractography results. Proc Intl Soc Magn Reson Med 2005;13:222
  27. ↵
    Reese TG, Heid O, Weisskoff RM, et al. Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo. Magn Reson Med 2003;49:177–82
    CrossRefPubMedWeb of Science
  28. ↵
    Haselgrove JC, Moore JR. Correction for distortion of echo-planar images used to calculate the apparent diffusion coefficient. Magn Reson Med 1996;36:960–64
    CrossRefPubMedWeb of Science
  29. ↵
    Bammer R, Auer M, Keeling SL, et al. Diffusion tensor imaging using single-shot SENSE-EPI. Magn Reson Med 2002;48:128–36
    CrossRefPubMedWeb of Science
  30. ↵
    Andersson JL, Skare S. A model-based method for retrospective correction of geometric distortions in diffusion-weighted EPI. NeuroImage 2002;16:177–99
    CrossRefPubMedWeb of Science
  31. ↵
    Stejskal EO. Use of spin echoes in a pulsed magnetic-field gradient to study anisotropic, restricted diffusion and flow. J Chem Phys 1965;43:3597–603
    CrossRef
  32. ↵
    Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J 1994;66:259–67
    PubMedWeb of Science
  33. ↵
    Basser PJ. New histological and physiological stains derived from diffusion-tensor MR images. Ann NY Acad Sci 1997;820:123–38
    CrossRefPubMedWeb of Science
  34. ↵
    Hill DL, Batchelor PG, Holden M, et al. Medical image registration. Phys Med Biol 2001;46:R1–45
    CrossRefPubMedWeb of Science
  35. ↵
    Bermel RA, Sharma J, Tjoa CW, et al. A semiautomated measure of whole-brain atrophy in multiple sclerosis. J Neurol Sci 2003;208:57–65
    CrossRefPubMedWeb of Science
  36. ↵
    Miller DH, Barkhof F, Frank JA, et al. Measurement of atrophy in multiple sclerosis: pathological basis, methodological aspects and clinical relevance. Brain 2002;125:1676–95.
    Abstract/FREE Full Text
  37. ↵
    van Buchem MA, McGowan JC, Grossman RI. Magnetization transfer histogram methodology: its clinical and neuropsychological correlates. Neurology 1999;53(Suppl 3):S23–28
  38. ↵
    Vaughan JT, Garwood M, Collins CM, et al. 7T vs. 4T: RF power, homogeneity, and signal-to-noise comparison in head images. Magn Reson Med 2001;46:24–30
    CrossRefPubMedWeb of Science
  39. ↵
    Kim DH, Adalsteinsson E, Glover GH, et al. Regularized higher-order in vivo shimming. Magn Reson Med 2002;48:715–22
    CrossRefPubMedWeb of Science
  40. ↵
    Pruessmann KP, Weiger M, Scheidegger MB, et al. SENSE: sensitivity encoding for fast MRI. Magn Redon Med 1999;42:952–62
    CrossRef
  41. ↵
    Sicotte NL, Voskuhl RR, Bouvier S, et al. Comparison of multiple sclerosis lesions at 1.5 and 3.0 Tesla. Invest Radiol 2003;38:423–27
    CrossRefPubMedWeb of Science
  42. Bachmann R, Reilmann R, Kraemer S, et al. Multiple sclerosis: comparative MR-imaging at 1.5 and 3.0. Presented at Radiological Society of North America RSNA 89th Scientific Assembly and Meeting; Nov 30–Dec 5,2003; Chicago, Ill. Abstract 1465.
  43. Ertl-Wagner BB, Reith W, Sartor K. Low field-low cost: can low-field magnetic resonance systems replace high-field magnetic resonance systems in the diagnostic assessment of multiple sclerosis patients? Eur Radiol 2001;11:1490–94
    CrossRefPubMed
  44. ↵
    Erskine MK, Cook LL, Riddle KE, et al. Resolution-dependent estimates of multiple sclerosis lesion loads. Can J Neurol Sci 2005;32:205–12
    PubMedWeb of Science
  45. ↵
    Agosta F, Benedetti B, Rocca MA, et al. Quantification of cervical cord pathology in primary progressive MS using diffusion tensor MRI. Neurology 2005;64:631–35
    Abstract/FREE Full Text
  46. ↵
    Valsasina P, Rocca MA, Agosta F, et al. Mean diffusivity and fractional anisotropy histogram analysis of the cervical cord in MS patients. NeuroImage 2005;26:822–28
    CrossRefPubMedWeb of Science
  47. ↵
    Trip SA, Wheeler-Kingshott C, Jones SJ, et al. Optic nerve diffusion tensor imaging in optic neuritis. NeuroImage 2006;30:498–505.
    CrossRefPubMedWeb of Science
  48. ↵
    Pipe JG, Farthing VG, Forbes KP. Multishot diffusion-weighted FSE using PROPELLER MRI [published erratum appears in Magn Reson Med 2002; 47: 621]. Magn Reson Med 2002;47:42–52.
    CrossRefPubMed
  49. ↵
    Pierpaoli C, Barnett A, Pajevic S, et al. Water diffusion changes in wallerian degeneration and their dependence on white matter architecture. NeuroImage 2001;13:1174–85
    PubMedWeb of Science
  50. ↵
    Virta A, Barnett A, Pierpaoli C. Visualizing and characterizing white matter fiber structure and architecture in the human pyramidal tract using diffusion tensor MRI. Magn Reson Imag 1999;17:1121–33
    CrossRefPubMedWeb of Science
  51. ↵
    Mori S, Crain BJ, Chacko VP, et al. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 1999;45:265–69
    CrossRefPubMedWeb of Science
  52. Conturo TE, Lori NF, Cull TS, et al. Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci U S A 1999;96:10422–27
    Abstract/FREE Full Text
  53. Mori S, Kaufmann WE, Pearlson GD, et al. In vivo visualization of human neural pathways by magnetic resonance imaging. Ann Neurol 2000;47:412–14
    CrossRefPubMedWeb of Science
  54. ↵
    Basser PJ, Pajevic S, Pierpaoli C, et al. In vivo fiber tractography using DT-MRI data. Magn Reson Med 2000;44:625–32
    CrossRefPubMedWeb of Science
  55. ↵
    Jones DK. Determining and visualizing uncertainty in estimates of fiber orientation from diffusion tensor MRI. Magn Reson Med 2003;49:7–12
    CrossRefPubMedWeb of Science
  56. Anderson AW. Theoretical analysis of the effect of noise on diffusion tensor imaging. Magn Reson Med 2001;46:1174–88
    CrossRefPubMedWeb of Science
  57. Lazar M, Alexander AL. An error analysis of white matter tractography methods: synthetic diffusion tensor field simulations. NeuroImage 2003;20:1140–53
    CrossRefPubMedWeb of Science
  58. ↵
    Behrens TE, Woolrich MW, Jenkinson M, et al. Characterization and propagation of uncertainty in diffusion weighted MR imaging. Magn Reson Med 2003;50:1077–88
    CrossRefPubMedWeb of Science
  59. ↵
    Alexander DC, Pierpaoli C, Basser PJ, et al. Spatial transformation of diffusion tensor magnetic resonance images. IEEE Trans Med Imaging 2001;20:1131–39
    CrossRefPubMedWeb of Science
  60. ↵
    Rohde GK, Aldroubi A, Dawant BM. The adaptive bases algorithm for intensity-based non-rigid registration. IEEE Trans Med Imaging 2003;22:1470–79
    CrossRefPubMedWeb of Science
  61. Rueckert D, Frangi AF, Schnabel JA. Automatic construction of 3-D statistical deformation models of the brain using non-rigid registration. IEEE Trans Med Imaging 2003;22:1014–25
    CrossRefPubMedWeb of Science
  62. Friston KF, Ashburner J, Frith C, et al. Spatial registration and normalization of images. Human Brain Mapping 1995;2:165–89
  63. ↵
    Bookstein L. Principal warps: thin plate splines and the decomposition of deformations. IEEE Trans Pattern Anal Mach Intell 1989;11:567–85
    CrossRef
  64. ↵
    Park HJ, Kubicki M, Shenton ME, et al. Spatial normalization of diffusion tensor MRI using multiple channels. NeuroImage 2003;20:1995–2009
    CrossRefPubMedWeb of Science
  65. ↵
    Tuch DS, Reese TG, Wiegell MR, et al. High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn Reson Med 2002;48:577–82
    CrossRefPubMedWeb of Science
  66. ↵
    Callaghan PT, Coy A, MacGowan D, et al. Diffraction-like effects in NMR diffusion studies of fluids in porous solids. Nature 1991;351:467–69
    CrossRefWeb of Science
  67. ↵
    Basser PJ. Relationships between diffusion tensor and q-space MRI. Magn Reson Med 2002;47:392–97
    CrossRefPubMedWeb of Science
  68. ↵
    Assaf Y, Cohen Y. Structural information in neuronal tissue as revealed by q-space diffusion NMR spectroscopy of metabolites in bovine optic nerve. NMR Biomed 1999;12:25–44
  69. Assaf Y, Mayk A, Cohen Y. Displacement images of spinal cord using q-space diffusion weighted MRI. Magn Reson Med 2000;44:713–22
    CrossRefPubMed
  70. Assaf Y, Cohen Y. Assignment of the low water diffusion component in the central nervous system using q-space diffusion MRS: implication for fiber tract imaging. Magn Reson Med 2000;43:191–99
    CrossRefPubMedWeb of Science
  71. ↵
    Wedeen VJ, Reese TG, Tuch DS, et al. Mapping fiber orientation spectra in cerebral white matter with Fourier-transform diffusion MRI. Proc Intl Soc Magn Reson Med 2000;8:82
  72. ↵
    Assaf Y, Ben-Bashat D, Chapman J, et al. High b-value q-space analyzed diffusion-weighted MRI: application to multiple sclerosis. Magn Reson Med 2002;47:115–26
    CrossRefPubMedWeb of Science
  73. ↵
    Assaf Y, Chapman J, Ben-Bashat D, et al. White matter changes in multiple sclerosis: correlation of q-space diffusion MRI and 1H MRS. Magn Reson Imaging 2005;23:703–10
    CrossRefPubMed
  74. ↵
    Frank LR. Anisotropy in high angular resolution diffusion-weighted MRI. Magn Reson Med 2001;45:935–39
    CrossRefPubMedWeb of Science
  75. ↵
    Tournier JD, Calamante F, Gadian DG, et al. Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. NeuroImage 2004;23:1176–85
    CrossRefPubMedWeb of Science
  76. ↵
    Tuch DS. Q-ball imaging. Magn Res Med 2004;52:1358–72
    CrossRefPubMedWeb of Science
  77. ↵
    Filippi M, Horsfield MA, Ader HJ, et al. Guidelines for using quantitative measures of brain magnetic resonance imaging abnormalities in monitoring the treatment of multiple sclerosis. Ann Neurol 1998;43:499–506
    CrossRefPubMedWeb of Science
  78. ↵
    Sormani MP, Iannucci G, Rocca MA, et al. Reproducibility of magnetization transfer ratio histogram-derived measures of the brain in healthy volunteers. AJNR Am J Neuroradiol 2000;21:133–36
    Abstract/FREE Full Text
  79. ↵
    Skare S, Hedehus M, Moseley, et al. Condition number as a measure of noise performance of diffusion tensor data acquisition schemes with MRI. J Magn Reson 2000;147:340–52
    CrossRefPubMedWeb of Science
  80. Hasan KM, Parker DL, Alexander AL. Comparison of gradient encoding schemes for diffusion-tensor MRI. J Magn Reson Imaging 2001;13:769–80
    CrossRefPubMedWeb of Science
  81. ↵
    Alexander DC, Barker GJ. Optimal imaging parameters for fibre-orientation estimation in diffusion MRI. NeuroImage 2005;27:357–67
    CrossRefPubMedWeb of Science
  82. ↵
    Zhou X, Maier JK, Reynolds HG, inventors; General Electric Company, assignee. Method to reduce eddy current effects in diffusion-weighted echo planar imaging. US Patent 5,864,233. January 26,1999
  83. ↵
    Zhou X, Maier JK, Huff SJ, et al, inventors; General Electric Company, assignee. Method and apparatus for producing diffusion weighted MR images. US Patent 6,323,646. November 27,2001
  84. ↵
    Glover GH, Pelc NJ, inventors; General Electric Company, assignee. Method for correcting image distortion due to gradient nonuniformity. US Patent 4,591,789. May 27,1986
  85. ↵
    Bammer R, Markl M, Barnett A, et al. Analysis and generalized correction of the effect of spatial gradient field distortions in diffusion-weighted imaging. Magn Reson Med 2003;50:560–69
    CrossRefPubMed
  86. ↵
    Skare S, Andersson JL. On the effects of gating in diffusion imaging of the brain using single shot EPI. Magn Reson Imaging 2001;19:1125–28
    CrossRefPubMed
  87. ↵
    de Crespigny AJ, Marks MP, Enzmann DR, et al. Navigated diffusion imaging of normal and ischemic human brain. Magn Reson Med 1995;33:720–28
    PubMedWeb of Science
  88. Miller KL, Pauly JM. Nonlinear navigated motion correction for diffusion imaging. Proc Intl Soc Magn Reson Med 2002;10:1110
  89. Butts K, de Crespigny A, Pauly JM, et al. Diffusion-weighted interleaved echo-planar imaging with a pair of orthogonal navigator echoes. Magn Reson Med 1996;35:763–70
    PubMed
  90. Butts K, Pauly J, de Crespigny A, et al. Isotropic diffusion-weighted and spiral-navigated interleaved EPI for routine imaging of acute stroke. Magn Reson Med 1997;38:741–49
    PubMed
  91. ↵
    Atkinson D, Porter DA, Hill DL, et al. Sampling and reconstruction effects due to motion in diffusion-weighted interleaved echo planar imaging. Magn Reson Med 2000;44:101–09
    CrossRefPubMedWeb of Science
  92. ↵
    Bammer R, Stollberger R, Augustin M, et al. Improved ADC estimation from diffusion-weighted magnitude images. Proc Intl Soc Magn Reson Med 1999;7:1792
  93. ↵
    Dietrich O, Heiland S, Sartor K. Noise correction for the exact determination of apparent diffusion coefficients at low SNR. Magn Reson Med 2001;45:448–53
    CrossRefPubMed
  94. ↵
    Tofts PS, Lloyd D, Barker G, et al. Test liquids to monitor accuracy in measuring apparent self-diffusion coefficient for multi-centre studies. Proc Int Soc Magn Reson Med 1999;7:1803
  95. ↵
    Cercignani M, Bammer R, Sormani MP, et al. Inter-sequence and inter-imaging unit variability of diffusion tensor MR imaging histogram-derived metrics of the brain in healthy volunteers. AJNR Am J Neuroradiol 2003;24:638–43
    Abstract/FREE Full Text
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 28 (3)
American Journal of Neuroradiology
Vol. 28, Issue 3
March 2007
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Diffusion MR Imaging in Multiple Sclerosis: Technical Aspects and Challenges
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
E. Pagani, R. Bammer, M.A. Horsfield, M. Rovaris, A. Gass, O. Ciccarelli, M. Filippi
Diffusion MR Imaging in Multiple Sclerosis: Technical Aspects and Challenges
American Journal of Neuroradiology Mar 2007, 28 (3) 411-420;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Diffusion MR Imaging in Multiple Sclerosis: Technical Aspects and Challenges
E. Pagani, R. Bammer, M.A. Horsfield, M. Rovaris, A. Gass, O. Ciccarelli, M. Filippi
American Journal of Neuroradiology Mar 2007, 28 (3) 411-420;
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Diffusion Tensor MR imaging
    • Future Perspectives
    • Conclusions
    • Acknowledgments
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Estimated connectivity networks outperform observed connectivity networks when classifying people with multiple sclerosis into disability groups
  • Magnetic Resonance Imaging in Multiple Sclerosis
  • Modeling the Relationship among Gray Matter Atrophy, Abnormalities in Connecting White Matter, and Cognitive Performance in Early Multiple Sclerosis
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • An Atlas of Neonatal Neurovascular Imaging Anatomy as Depicted with Microvascular Imaging: The Intracranial Arteries
  • An Atlas of Neonatal Neurovascular Imaging Anatomy as Depicted with Microvascular Imaging: The Intracranial Veins
  • Clinical Translation of Hyperpolarized 13C Metabolic Probes for Glioma Imaging
Show more Review Articles

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire