Research ArticleBRAIN
Advantages and Pitfalls in 3T MR Brain Imaging: A Pictorial Review
Bernd L. Schmitz, Andrik J. Aschoff, Martin H.K. Hoffmann and Georg Grön
American Journal of Neuroradiology October 2005, 26 (9) 2229-2237;
Bernd L. Schmitz
Andrik J. Aschoff
Martin H.K. Hoffmann

References
- ↵Schultz E, Felix R. [Rapid magnetic resonance tomography sequences: theoretical principles and clinical imaging characteristics]. Digitale Bilddiagn 1988;8:50–58
- ↵de Zwart JA, Ledden PJ, van Gelderen P, et al. Signal-to-noise ratio and parallel imaging performance of a 16-channel receive-only brain coil array at 3.0 tesla. Magn Reson Med 2004;51:22–26
- ↵Albert MS, Cates GD, Driehuys B, et al. Biological magnetic resonance imaging using laser-polarized 129Xe. Nature 1994;370:199–201
- Middleton H, Black RD, Saam B, et al. MR imaging with hyperpolarized 3He gas. Magn Reson Med 1995;33:271–275
- ↵Schad LR, Bachert P, Bock M, et al. Hyperpolarized gases: a new type of MR contrast agents? Acta Radiol Suppl 1997;412:43–46
- ↵
- ↵Schick F. Whole-body MRI at high field: technical limits and clinical potential. Eur Radiol 2005;15:946–959
- Norris DG. High field human imaging. J Magn Reson Imaging 2003;18:519–529
- ↵Kim DS, Garwood M. High-field magnetic resonance techniques for brain research. Curr Opin Neurobiol 2003;13:612–619
- ↵Ross JS. The high-field-strength curmudgeon. AJNR Am J Neuroradiol 2004;25:168–169
- Shapiro MD, Magee T, Williams D, Ramnath R, Ross JS. The time for 3T clinical imaging is now. AJNR Am J Neuroradiol 2004;25:1628–1629; author reply 1629
- ↵Pattany PM. 3T MR imaging: the pros and cons. AJNR Am J Neuroradiol 2004;25:1455–1456
- ↵Collins CM, Liu W, Schreiber W, et al. Central brightening due to constructive interference with, without, and despite dielectric resonance. J Magn Reson Imaging 2005;21:192–196
- ↵Hoult DI, Phil D. Sensitivity and power deposition in a high-field imaging experiment. J Magn Reson Imaging 2000;12:46–67
- ↵Adriany G, Van de Moortele PF, Wiesinger F, et al. Transmit and receive transmission line arrays for 7 tesla parallel imaging. Magn Reson Med 2005;53:434–445
- ↵
- ↵Hashemi RH, Bradley WG, Lisanti CJ. MRI: the basics. Philadelphia: Lippincott Williams & Wilkins;2004 :141–142
- ↵Hashemi RH, Bradley WG, Lisanti CJ. MRI: the basics. Philadelphia: Lippincott Williams & Wilkins;2004 :39
- ↵Graf H, Schick F, Claussen CD, Seemann MD. MR visualization of the inner ear structures: comparison of 1.5 tesla and 3 tesla images. Rofo 2004;176:17–20
- ↵Hennig J, Scheffler K. Hyperechoes. Magn Reson Med 2001;46:6–12
- ↵
- ↵
- ↵
- ↵Hu X, Norris DG. Advances in high-field magnetic resonance imaging. Annu Rev Biomed Eng 2004;6:157–184
- ↵Ethofer T, Mader I, Seeger U, et al. Comparison of longitudinal metabolite relaxation times in different regions of the human brain at 1.5 and 3 tesla. Magn Reson Med 2003;50:1296–1301
- ↵Wansapura JP, Holland SK, Dunn RS, Ball WS Jr. NMR relaxation times in the human brain at 3.0 tesla. J Magn Reson Imaging 1999;9:531–538
- ↵Schmitz BL, Grön G, Brausewetter F, et al. Enhancing gray-to- white matter contrast in 3T T1 spin-echo brain scans by optimizing flip angle. AJNR Am J Neuroradiol 2005;26:2000–2004
- ↵Mills TC, Ortendahl DA, Hylton NM, et al. Partial flip angle MR imaging. Radiology 1987;162:531–539
- ↵Kato H, Izumiyama M, Izumiyama K, et al. Silent cerebral microbleeds on T2*-weighted MRI: correlation with stroke subtype, stroke recurrence, and leukoaraiosis. Stroke 2002;33:1536–1540
- ↵
- ↵Hennig J, Speck O, Koch MA, Weiller C. Functional magnetic resonance imaging: a review of methodological aspects and clinical applications. J Magn Reson Imaging 2003;18:1–15
- Chen W, Ugurbil K. High spatial resolution functional magnetic resonance imaging at very-high-magnetic field. Top Magn Reson Imaging 1999;10:63–78
- ↵Yacoub E, Shmuel A, Pfeuffer J, et al. Imaging brain function in humans at 7 tesla. Magn Reson Med 2001;45:588–594
- ↵Bernstein MA, Huston J 3rd, Lin C, et al. High-resolution intracranial and cervical MRA at 3.0T: technical considerations and initial experience. Magn Reson Med 2001;46:955–962
- Gaa J, Weidauer S, Requardt M, et al. Comparison of intracranial 3D-ToF-MRA with and without parallel acquisition techniques at 1.5T and 3.0T: preliminary results. Acta Radiol 2004;45:327–332
- Willinek WA, Gieseke J, von Falkenhausen M, et al. Sensitivity encoding (SENSE) for high spatial resolution time-of-flight MR angiography of the intracranial arteries at 3.0 T. Rofo 2004;176:21–26
- Willinek WA, Born M, Simon B, et al. Time-of-flight MR angiography: comparison of 3.0-T imaging and 1.5-T imaging–initial experience. Radiology 2003;229:913–920
- ↵
- ↵
- ↵Gibbs GF, Huston J 3rd, Bernstein MA, et al. Improved image quality of intracranial aneurysms: 3.0-T versus 1.5-T time-of-flight MR angiography. AJNR Am J Neuroradiol 2004;25:84–87
- ↵
In this issue
Advertisement
Bernd L. Schmitz, Andrik J. Aschoff, Martin H.K. Hoffmann, Georg Grön
Advantages and Pitfalls in 3T MR Brain Imaging: A Pictorial Review
American Journal of Neuroradiology Oct 2005, 26 (9) 2229-2237;
0 Responses
Jump to section
Related Articles
- No related articles found.
Cited By...
- Diagnostic Performance of TOF, 4D MRA, Arterial Spin-Labeling, and Susceptibility-Weighted Angiography Sequences in the Post-Radiosurgery Monitoring of Brain AVMs
- Clinical and Pathophysiologic Correlates of Basilar Artery Measurements in Fabry Disease
- High-Resolution MRA Cerebrovascular Findings in a Tri-Ethnic Population
- Assessment of Heating on Titanium Alloy Cerebral Aneurysm Clips during 7T MRI
- Comparison of structural MRI brain measures between 1.5T and 3T: data from the Lothian Birth Cohort 1936
- Brain Tumor-Enhancement Visualization and Morphometric Assessment: A Comparison of MPRAGE, SPACE, and VIBE MRI Techniques
- Susceptibility-Weighted Angiography for the Follow-Up of Brain Arteriovenous Malformations Treated with Stereotactic Radiosurgery
- Comparison of Dynamic Contrast-Enhanced 3T MR and 64-Row Multidetector CT Angiography for the Localization of Spinal Dural Arteriovenous Fistulas
- Blood Flow of Ophthalmic Artery in Healthy Individuals Determined by Phase-Contrast Magnetic Resonance Imaging
- Can 3T MR Angiography Replace DSA for the Identification of Arteries Feeding Intracranial Meningiomas?
- High-Resolution 3D-Constructive Interference in Steady-State MR Imaging and 3D Time-of-Flight MR Angiography in Neurovascular Compression: A Comparison between 3T and 1.5T
- Normal Pituitary Stalk: High-Resolution MR Imaging at 3T
- 3T MR Imaging of Postoperative Recurrent Middle Ear Cholesteatomas: Value of Periodically Rotated Overlapping Parallel Lines with Enhanced Reconstruction Diffusion-Weighted MR Imaging
This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.
More in this TOC Section
Similar Articles
Advertisement