Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleBrain

Imaging of Acute Subarachnoid Hemorrhage with a Fluid-Attenuated Inversion Recovery Sequence in an Animal Model: Comparison with Non–Contrast-Enhanced CT

Richard J. Woodcock Jr, John Short, Huy M. Do, Mary E. Jensen and David F. Kallmes
American Journal of Neuroradiology October 2001, 22 (9) 1698-1703;
Richard J. Woodcock Jr
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John Short
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Huy M. Do
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mary E. Jensen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David F. Kallmes
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

Abstract

BACKGROUND AND PURPOSE: Fluid-attenuated inversion recovery (FLAIR) MR imaging sequences have been previously described in the evaluation of acute subarachnoid hemorrhage (SAH) in human subjects and have demonstrated good sensitivity. The purpose of this study was to evaluate a FLAIR sequence in an animal model of SAH and to compare the results with those obtained with non–contrast-enhanced CT.

METHODS: SAH was experimentally induced in 18 New Zealand rabbits by injecting autologous arterial blood into the subarachnoid space of the foramen magnum. Nine animals had high-volume (1–2 mL) injections, and nine animals had low-volume (0.2–0.5 mL) injections. Four control animals were injected with 0.5 mL of saline. The animals were imaged with a FLAIR sequence and standard CT 2–5 hours after injection. Gross pathologic evaluation of seven of the animals was performed. Four blinded readers independently evaluated the CT and FLAIR images for SAH and graded the probability of SAH on a scale of 1 to 5 (1 = no hemorrhage, 5 = definite hemorrhage).

RESULTS: Overall, the sensitivity of FLAIR was 89%, and the sensitivity of CT was 39% (P < .01). In animals with a high volume of SAH, the sensitivity of FLAIR was 100%, and the sensitivity of CT was 56%. In animals with a low volume of SAH, the sensitivity of FLAIR was 78%, and the sensitivity of CT was 22%. The specificity of FLAIR in animals without SAH was 100%, and the specificity of CT was 100%. The average reader score for FLAIR was 3.8, and that for CT was 2.2 (P < .001). Reader scores for FLAIR were higher than those for CT in 94% (P < .01) of animals with SAH and in 25% of animals without SAH (P > .05). Seven animals underwent gross pathologic examination, and all had blood in the subarachnoid space around the brain stem.

CONCLUSION: FLAIR was more sensitive than CT in the evaluation of acute SAH in this model, especially when a high volume of SAH was present. This study provides a model for further experimentation with MR imaging in the evaluation of SAH. These findings are consistent with those of current clinical literature, which show FLAIR to be an accurate MR sequence in the diagnosis of SAH.

  • Copyright © American Society of Neuroradiology
View Full Text
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 22 (9)
American Journal of Neuroradiology
Vol. 22, Issue 9
1 Oct 2001
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Imaging of Acute Subarachnoid Hemorrhage with a Fluid-Attenuated Inversion Recovery Sequence in an Animal Model: Comparison with Non–Contrast-Enhanced CT
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Richard J. Woodcock Jr, John Short, Huy M. Do, Mary E. Jensen, David F. Kallmes
Imaging of Acute Subarachnoid Hemorrhage with a Fluid-Attenuated Inversion Recovery Sequence in an Animal Model: Comparison with Non–Contrast-Enhanced CT
American Journal of Neuroradiology Oct 2001, 22 (9) 1698-1703;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Imaging of Acute Subarachnoid Hemorrhage with a Fluid-Attenuated Inversion Recovery Sequence in an Animal Model: Comparison with Non–Contrast-Enhanced CT
Richard J. Woodcock Jr, John Short, Huy M. Do, Mary E. Jensen, David F. Kallmes
American Journal of Neuroradiology Oct 2001, 22 (9) 1698-1703;
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Methods
    • Results
    • Discussion
    • Conclusion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Detection of aneurysmal subarachnoid hemorrhage 3 months after initial bleeding: evaluation of T2* and FLAIR MR sequences at 3 T in comparison with initial non-enhanced CT as a gold standard
  • Double Inversion Recovery MR Sequence for the Detection of Subacute Subarachnoid Hemorrhage
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Quiet PROPELLER MRI Techniques Match the Quality of Conventional PROPELLER Brain Imaging Techniques
  • Predictors of Reperfusion in Patients with Acute Ischemic Stroke
  • Enhanced Axonal Metabolism during Early Natalizumab Treatment in Relapsing-Remitting Multiple Sclerosis
Show more Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire