Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Abstract

MR detection of brain iron.

L O Thomas, O B Boyko, D C Anthony and P C Burger
American Journal of Neuroradiology September 1993, 14 (5) 1043-1048;
L O Thomas
Department of Radiology, Duke University Medical Center, Durham, NC 27710.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
O B Boyko
Department of Radiology, Duke University Medical Center, Durham, NC 27710.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D C Anthony
Department of Radiology, Duke University Medical Center, Durham, NC 27710.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P C Burger
Department of Radiology, Duke University Medical Center, Durham, NC 27710.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • Responses
  • PDF
Loading

Abstract

PURPOSE To provide further quantitative studies concerning the relationship with age between regional brain iron and T2 shortening.

METHODS a) Quantitative T2 calculations of eight anatomic regions (red nucleus, substantia nigra, dentate nucleus, corpus callosum, caudate, putamen, temporal lobe white matter, and frontal lobe white matter) from T2-weighted spin-echo images were performed in 60 patients aged newborn to 35 years. b) Quantitative brain iron concentrations were obtained in six of the eight anatomic regions (red nucleus, substantia nigra, dentate nucleus, corpus callosum, cauda, and putamen) using 13 autopsied brains (newborn to 78 years). Brain tissue from these six regions was digested with 0.6 N HCl-2.5% wt/vol KMnO4 for 2 hours at 60 degrees C. After centrifugation, 0.1 mL of an iron-chelating reagent (2 mol/L ascorbic acid, 5 mol/L ammonium acetate, 6.5 nmol/L ferrozine, 13.1 mmol/L neocuprine) was added and the absorbance was measured at 562 nm/L and compared with a standard curve with ferric chloride. c) The in vivo iron concentrations in tissue that were obtained were reproduced in four test tube phantom studies with ferric ammonium sulfate or ferrous ammonium sulfate dissolved in either deionized water or 5% agarose. T2 calculations of the phantoms were made with a single-section multiple repetition time, multiple echo time acquisition.

RESULTS a) Clinical T2 calculations--all eight anatomic regions showed a decrease with age in T2 value, beginning shortly after birth. During the first three decades, the T2 shortening was most significant in the region of substantia nigra. b) Quantitative brain iron--five anatomic regions but not the corpus callosum demonstrated an age-related increase in brain iron (1449.6 nmol/g for the red nucleus versus 261.8 nmol/g for the corpus callosum). c) T2 effect of iron in vitro--both the ferric and ferrous iron phantoms showed a decreased T2 value in the in vivo concentration range of iron obtained from the postmortem studies. The T2 shortening was most marked for the ferric phantoms.

CONCLUSION There is an age-related accumulation of iron in five regions of the brain, correlating with an associated decrease in T2 value that can be demonstrated in iron phantoms. Brain iron appears to contribute to the progressive decrease of T2 signal that occurs with aging.

  • Copyright © American Society of Neuroradiology
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology
Vol. 14, Issue 5
1 Sep 1993
  • Table of Contents
  • Index by author
Advertisement
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
MR detection of brain iron.
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
L O Thomas, O B Boyko, D C Anthony, P C Burger
MR detection of brain iron.
American Journal of Neuroradiology Sep 1993, 14 (5) 1043-1048;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
MR detection of brain iron.
L O Thomas, O B Boyko, D C Anthony, P C Burger
American Journal of Neuroradiology Sep 1993, 14 (5) 1043-1048;
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • Responses
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Maturation of striatal dopamine supports the development of habitual behavior through adolescence
  • Gestational and postnatal age associations for striatal tissue iron deposition in early infancy
  • Dopamine-related striatal neurophysiology is associated with specialization of frontostriatal reward circuitry through adolescence
  • Longitudinal Development of Brain Iron Is Linked to Cognition in Youth
  • Striatal iron content is linked to reduced fronto-striatal brain function under working memory load
  • Gray Matter Growth Is Accompanied by Increasing Blood Flow and Decreasing Apparent Diffusion Coefficient during Childhood
  • Striatal Iron Content Predicts Its Shrinkage and Changes in Verbal Working Memory after Two Years in Healthy Adults
  • Effect of Age on MRI Phase Behavior in the Subcortical Deep Gray Matter of Healthy Individuals
  • Biophysical mechanisms of phase contrast in gradient echo MRI
  • Overexpression of Alzheimer's Disease Amyloid-{beta} Opposes the Age-dependent Elevations of Brain Copper and Iron
  • Demonstration of the Medullary Lamellae of the Human Red Nucleus with High-resolution Gradient-echo MR Imaging
  • Basal ganglia alterations and brain atrophy in Huntington's disease depicted by transcranial real time sonography
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire