- Number Needed to Treat with Vertebral Augmentation to Save a Life
The purpose of this study was to calculate the number needed to treat to save 1 life at 1 year and up to 5 years after vertebral augmentation. A 10-year sample of the 100% US Medicare data base was used to identify patients with vertebral compression fractures treated with nonsurgical management, balloon kyphoplasty, and vertebroplasty. The number needed to treat was calculated between augmentation and nonsurgical management groups from years 1–5 following a vertebral compression fracture diagnosis, using survival probabilities for each management approach. The adjusted number needed to treat to save 1 life for nonsurgical management versus kyphoplasty ranged from 14.8 at year 1 to 11.9 at year 5. The adjusted number needed to treat for nonsurgical management versus vertebroplasty ranged from 22.8 at year 1 to 23.8 at year 5. The authors conclude that the NNT analysis of more than 2 million patients with VCF reveals that only 15 patients need to be treated to save 1 life at 1 year. This has an obvious clinically significant impact and given that all augmentation clinical trials are underpowered to detect a mortality benefit, this large dataset analysis reveals that vertebral augmentation provides a significant mortality benefit over nonsurgical management with a low NNT.
- Anatomy of the Great Posterior Radiculomedullary Artery
The authors describe the microsurgical anatomy of the great posterior radiculomedullary artery with emphasis on its morphometric parameters as well as its implications for spinal cord blood supply. The artery of Adamkiewicz in spinal cord specimens (n = 50) was injected with colored latex until the small-caliber arterial vessels were filled and the great posterior radiculomedullary artery was identified. The course, diameter, and location of great posterior radiculomedullary artery were documented. A great posterior radiculomedullary artery was identified in 36 (72%) spinal cord specimens. In 11 (22%) specimens, bilateral great posterior radiculomedullary arteries were present. In 13 cases (26%), a unilateral left-sided great posterior radiculomedullary artery was identified. In 11 cases (22%), a unilateral right-sided great posterior radiculomedullary artery was identified.
- Armed Kyphoplasty: An Indirect Central Canal Decompression Technique in Burst Fractures
This study assesses the results of armed kyphoplasty using vertebral body stents or the SpineJack in traumatic, osteoporotic, and neoplastic burst fractures with respect to vertebral body height restoration and correction of posterior wall retropulsion. The authors performed a retrospective assessment of 53 burst fractures with posterior wall retropulsion and no neurologic deficit in 51 consecutive patients treated with armed kyphoplasty. Posterior wall retropulsion and vertebral body height were measured on pre- and postprocedural CT. Armed kyphoplasty was performed as a stand-alone treatment in 43 patients, combined with posterior instrumentation in 8 and laminectomy in 4. Pre-armed kyphoplasty and post-armed kyphoplasty mean posterior wall retropulsion was 5.8 and 4.5 mm, respectively, and mean vertebral body height was 10.8 and 16.7 mm, respectively. They conclude that in the treatment of burst fractures with posterior wall retropulsion and no neurologic deficit, armed kyphoplastyyields fracture reduction, internal fixation, and indirect central canal decompression.