Index by author
Sakai, O.
- Head and Neck ImagingYou have accessEtiology-Specific Mineralization Patterns in Patients with Labyrinthitis OssificansK. Buch, B. Baylosis, A. Fujita, M.M. Qureshi, K. Takumi, P.C. Weber and O. SakaiAmerican Journal of Neuroradiology March 2019, 40 (3) 551-557; DOI: https://doi.org/10.3174/ajnr.A5985
- Head and Neck ImagingYou have accessCT Texture Analysis of Cervical Lymph Nodes on Contrast-Enhanced [18F] FDG-PET/CT Images to Differentiate Nodal Metastases from Reactive Lymphadenopathy in HIV-Positive Patients with Head and Neck Squamous Cell CarcinomaH. Kuno, N. Garg, M.M. Qureshi, M.N. Chapman, B. Li, S.K. Meibom, M.T. Truong, K. Takumi and O. SakaiAmerican Journal of Neuroradiology March 2019, 40 (3) 543-550; DOI: https://doi.org/10.3174/ajnr.A5974
Sakur, S.
- NeurointerventionOpen AccessLocal Hemodynamic Conditions Associated with Focal Changes in the Intracranial Aneurysm WallJ.R. Cebral, F. Detmer, B.J. Chung, J. Choque-Velasquez, B. Rezai, H. Lehto, R. Tulamo, J. Hernesniemi, M. Niemela, A. Yu, R. Williamson, K. Aziz, S. Sakur, S. Amin-Hanjani, F. Charbel, Y. Tobe, A. Robertson and J. FrösenAmerican Journal of Neuroradiology March 2019, 40 (3) 510-516; DOI: https://doi.org/10.3174/ajnr.A5970
Sanai, N.
- FELLOWS' JOURNAL CLUBAdult BrainOpen AccessAccurate Patient-Specific Machine Learning Models of Glioblastoma Invasion Using Transfer LearningL.S. Hu, H. Yoon, J.M. Eschbacher, L.C. Baxter, A.C. Dueck, A. Nespodzany, K.A. Smith, P. Nakaji, Y. Xu, L. Wang, J.P. Karis, A.J. Hawkins-Daarud, K.W. Singleton, P.R. Jackson, B.J. Anderies, B.R. Bendok, R.S. Zimmerman, C. Quarles, A.B. Porter-Umphrey, M.M. Mrugala, A. Sharma, J.M. Hoxworth, M.G. Sattur, N. Sanai, P.E. Koulemberis, C. Krishna, J.R. Mitchell, T. Wu, N.L. Tran, K.R. Swanson and J. LiAmerican Journal of Neuroradiology March 2019, 40 (3) 418-425; DOI: https://doi.org/10.3174/ajnr.A5981
The authors evaluated tumor cell density using a transfer learning method that generates individualized patient models, grounded in the wealth of population data, while also detecting and adjusting for interpatient variabilities based on each patient's own histologic data. They collected 82 image-recorded biopsy samples, from 18 patients with primary GBM. With multivariate modeling, transfer learning improved performance (r = 0.88) compared with one-model-fits-all (r = 0.39). They conclude that transfer learning significantly improves predictive modeling performance for quantifying tumor cell density in glioblastoma.
Sanelli, P.C.
- Adult BrainOpen AccessDynamic Contrast-Enhanced MRI Reveals Unique Blood-Brain Barrier Permeability Characteristics in the Hippocampus in the Normal BrainJ. Ivanidze, M. Mackay, A. Hoang, J.M. Chi, K. Cheng, C. Aranow, B. Volpe, B. Diamond and P.C. SanelliAmerican Journal of Neuroradiology March 2019, 40 (3) 408-411; DOI: https://doi.org/10.3174/ajnr.A5962
- Adult BrainOpen AccessAlterations in Blood-Brain Barrier Permeability in Patients with Systemic Lupus ErythematosusJ.M. Chi, M. Mackay, A. Hoang, K. Cheng, C. Aranow, J. Ivanidze, B. Volpe, B. Diamond and P.C. SanelliAmerican Journal of Neuroradiology March 2019, 40 (3) 470-477; DOI: https://doi.org/10.3174/ajnr.A5990
Sati, P.
- Adult BrainOpen AccessQuantitative Susceptibility Mapping to Assess Cerebral Vascular ComplianceC. Birkl, C. Langkammer, P. Sati, C. Enzinger, F. Fazekas and S. RopeleAmerican Journal of Neuroradiology March 2019, 40 (3) 460-463; DOI: https://doi.org/10.3174/ajnr.A5933
Sattur, M.G.
- FELLOWS' JOURNAL CLUBAdult BrainOpen AccessAccurate Patient-Specific Machine Learning Models of Glioblastoma Invasion Using Transfer LearningL.S. Hu, H. Yoon, J.M. Eschbacher, L.C. Baxter, A.C. Dueck, A. Nespodzany, K.A. Smith, P. Nakaji, Y. Xu, L. Wang, J.P. Karis, A.J. Hawkins-Daarud, K.W. Singleton, P.R. Jackson, B.J. Anderies, B.R. Bendok, R.S. Zimmerman, C. Quarles, A.B. Porter-Umphrey, M.M. Mrugala, A. Sharma, J.M. Hoxworth, M.G. Sattur, N. Sanai, P.E. Koulemberis, C. Krishna, J.R. Mitchell, T. Wu, N.L. Tran, K.R. Swanson and J. LiAmerican Journal of Neuroradiology March 2019, 40 (3) 418-425; DOI: https://doi.org/10.3174/ajnr.A5981
The authors evaluated tumor cell density using a transfer learning method that generates individualized patient models, grounded in the wealth of population data, while also detecting and adjusting for interpatient variabilities based on each patient's own histologic data. They collected 82 image-recorded biopsy samples, from 18 patients with primary GBM. With multivariate modeling, transfer learning improved performance (r = 0.88) compared with one-model-fits-all (r = 0.39). They conclude that transfer learning significantly improves predictive modeling performance for quantifying tumor cell density in glioblastoma.
Schiff, D.
- FELLOWS' JOURNAL CLUBAdult BrainYou have accessNeuroimaging-Based Classification Algorithm for Predicting 1p/19q-Codeletion Status in IDH-Mutant Lower Grade GliomasP.P. Batchala, T.J.E. Muttikkal, J.H. Donahue, J.T. Patrie, D. Schiff, C.E. Fadul, E.K. Mrachek, M.-B. Lopes, R. Jain and S.H. PatelAmerican Journal of Neuroradiology March 2019, 40 (3) 426-432; DOI: https://doi.org/10.3174/ajnr.A5957
One hundred two IDH-mutant lower grade gliomas with preoperative MR imaging and known 1p/19q status from The Cancer Genome Atlas composed a training dataset. Two neuroradiologists in consensus analyzed the training dataset for various imaging features: tumor or cyst texture, margins, cortical infiltration, T2-FLAIR mismatch, tumor cyst, T2* susceptibility, hydrocephalus, midline shift, maximum dimension, primary lobe, necrosis, enhancement, edema, and gliomatosis. Statistical analysis of the training data produced a multivariate classification model for codeletion prediction based on a subset of MR imaging features and patient age. Training dataset analysis produced a 2-step classification algorithm with 86.3% codeletion prediction accuracy, based on the following: 1) the presence of the T2-FLAIR mismatch sign, which was 100% predictive of noncodeleted lowergrade gliomas; and 2)a logistic regression model based on texture, patient age, T2* susceptibility, primary lobe, and hydrocephalus. Independent validation ofthe classification algorithm rendered codeletion prediction accuracies of 81.1% and 79.2% in 2 independent readers.
Schwamm, L.H.
- MemorialYou have accessRobert H. Ackerman, MD, MPH (1935–2018)M.H. Lev, J.M. Romero, L.H. Schwamm, M.E. Cudkowicz and J.A. BrinkAmerican Journal of Neuroradiology March 2019, 40 (3) E12-E13; DOI: https://doi.org/10.3174/ajnr.A5989
Schwartz, E.
- Pediatric NeuroimagingOpen AccessUnderdevelopment of the Human Hippocampus in Callosal Agenesis: An In Vivo Fetal MRI StudyV. Knezović, G. Kasprian, A. Štajduhar, E. Schwartz, M. Weber, G.M. Gruber, P.C. Brugger, D. Prayer and M. VukšićAmerican Journal of Neuroradiology March 2019, 40 (3) 576-581; DOI: https://doi.org/10.3174/ajnr.A5986
Severac, F.
- NeurointerventionYou have accessPredictors and Clinical Impact of Delayed Stent Thrombosis after Thrombectomy for Acute Stroke with Tandem LesionsR. Pop, I. Zinchenko, V. Quenardelle, D. Mihoc, M. Manisor, J.S. Richter, F. Severac, M. Simu, S. Chibbaro, O. Rouyer, V. Wolff and R. BeaujeuxAmerican Journal of Neuroradiology March 2019, 40 (3) 533-539; DOI: https://doi.org/10.3174/ajnr.A5976