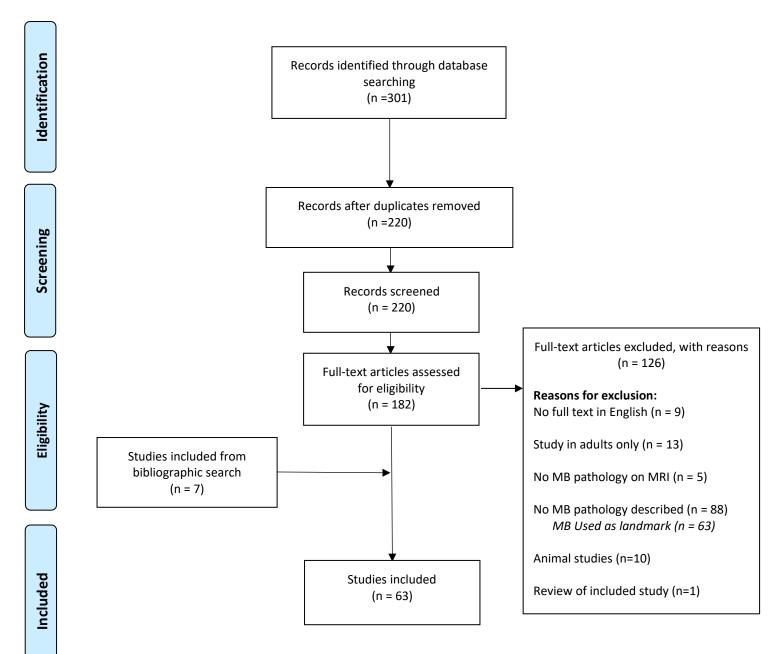
SUPPLEMENTARY MATERIAL

Search

Last search performed on the 1th of October 2021.

Pubmed:


(((mammillary bodies) OR (mammillary body)) AND ((pediatric) OR (child) OR (children) OR (infant) OR (neonatal) OR (adolescent)) AND ((MRI) OR (radiology) OR (T2) OR (DWI)))

Alternative spelling and variation of the words are automatically included by the pubmed search engine

Embase:

('mammillary bodies'/exp OR 'mammillary bodies' OR (mammillary AND bodies) OR 'mammillary body'/exp OR 'mammillary body' OR (mammillary AND ('body'/exp OR body))) AND ('pediatric'/exp OR pediatric OR 'child'/exp OR child OR 'children'/exp OR children OR 'infant'/exp OR infant OR neonatal OR 'adolescent'/exp OR adolescent) AND ('mri'/exp OR mri OR 'radiology'/exp OR radiology OR t2 OR dwi).

Flow-diagram showing the search and assessment of studies included

Flow Diagram

Overview of included articles arranged by underlying condition and age of (youngest) patient

Author	Study	Number of	Age of	Condition	Type of MB pathology on MRI	Lowest slice
Year	design	participants	participants		Other relevant outcomes (?)	thickness used
Wani et al. (2016) ¹	RS	22 patients	45 days – 8 months	Thiamine deficiency (WE)	Hyperintense signal on T2 weighted imaging in 1	4 mm. Interslice gap: 1 mm
Kornreich et al. (2005) ²	RS	6 patients	2-10 months	Thiamine deficiency	T2-weighted images showed hyperintensity of the MBs in 5 patients On follow up: atrophy of the MBs in three patients	Unknown
Fattal-Valevski et al. (2005) ³	RS	9 patients	2.5-12 months	Thiamine deficiency (WE)	T2 hyperintense MBs in 1 patient MRI findings improved 5 weeks later	Unknown
Gliebus et al. (2014) ⁴	CR	1 patient	19 months	Thiamine deficiency (WE)	Restriction of diffusion in MBs with increased signal onT2-weighted and FLAIR images Follow up 1.5 months later, showed a marked improvement of the signal changes	Unknown
Oka et al. (2001) ⁵	CR	1 patient	3	Thiamine deficiency (WE)	T2 hyperintense MBs Follow-up MR examination after 1 month demonstrated complete resolution	Unknown
Darlington et al. (2015) ⁶	CR	1 patient	5	Thiamine deficiency (WE)	Bilateral enhancement MBs	Unknown
Zuccoli et al. (2007) ⁷	RS	26 patients 13 no alcohol abuse (NA)	6-81 (mean 46.6 ± 19)	Thiamine deficiency (WE)	Symmetric lesions in MBs in 58% (in NA patients 38%) Contrast enhancement of MB statistically positively correlated with alcohol abuse group	Unknown
Zuccoli et al (2009) ⁸	RS	56 patients	6-88 (50.3±17)	Thiamine deficiency (WE)	Evidence of symmetric lesions in the MBs (45%) MB contrast enhancement was significantly associated with alcohol abuse	Unknown
Srivastava et al. (2012) ⁹	PS	11 patients 8 controls	7.8 ± 2.7 8.8 ± 2.5	Thiamine deficiency	MBs significantly smaller in patients At follow up MB volume significantly improved	3 mm
Vasconcelos et al. (1999) ¹⁰	Review of CRs	31 patients (8 with MRI)	11 ± 6.5	Thiamine deficiency (WE)	Increased signal in T2-weighted images and contrast enhancement of MB in all 8	Unknown

Harter et al. (1995) ¹¹	CR	1 patient	11	Thiamine deficiency (WE)	MB enhancement on postcontrast examination	Unknown
Cooke et al. (2006) ¹²	CR	1 patient	11	Thiamine deficiency	Typical midline increased signal intensity in the dorsal mid-brain, thalami, and MBs on FLAIR imaging	Unknown
Sparacia et al. (1999) ¹³	CR	1 patient	12	Thiamine deficiency (WE)	Intense enhancement of the MBs Follow-up 1 month later: no signal abnormalities were found nor was there MB atrophy	Unknown
Gupta et al. (2012) ¹⁴	PS	10 patients 11 controls	15 ± 11 40 ± 12	Thiamine deficiency	MB volume changes are primarily a consequence of thiamine deficiency, which may secondarily result in microstructural changes in the fornix	1 mm
Lamdhade et al. (2013) ¹⁵	CR	1 patient	16	Thiamine deficiency	Gadolinium enhancement of MBs and vermis	Unknown
Liu et al. (2006) ¹⁶	CR	1 patient	16	Thiamine deficiency (WE)	Gadolinium enhancement on day 5 in the right MB, this had not been found on the initial MRIs. <i>PA: focal hemorrhage, edema and hypertrophy of the</i> <i>endothelial cells of the right MB.</i>	Unknown
Arana-Guajardo et al. (2012) ¹⁷	CR	1 patient	17	Thiamine deficiency (WE)	Hyperintense signals in MBs on T2 FLAIR images	Unknown
Samanta et al. (2015) ¹⁸	CR	1 patient	17	Thiamine deficiency (WE)	abnormal T2 prolongation and restrictive diffusivity of bilateral MBs	Unknown
Renthal et al. (2014) ¹⁹	CR	1 patient	'adolescent'	Thiamine deficiency	Symmetric abnormal T2 prolongation of the mammillary bodies	Unknown
Lyons et al. (2016) ²⁰	CR	1 patient	18	Thiamine deficiency (WE)	symmetric signal T2 hyperintensity and restricted diffusion in het MBs	Unknown
Khalsa et al. (2016) ²¹	RS	32 patients 30 controls	19.4 ± 7.3	Thiamine deficiency	Significantly smaller MB volumes in underweight group. Weight-restored group exhibited significantly larger MB volumes.	Oversampled to a resolution of 0.2 x 0.2 x 0.2 mm3
Fei et al. (2008) ²²	RS	12 patients	43.9 (16-69)	Thiamine deficiency (WE)	Gadolinium enhancement of MB in 2 of 3 patients. No atrophy of MB	Unknown

R	23 patients in 17 articles	Unknown	Thiamine deficiency (WE)	16/23 cases showed bilateral alterations in the thalamus (70%), 13 in the periaqueductal region (57%), 11 in the MBs (47%) and three in the tectal plate (13%).	Unknown
R	Unknown	Unknown	Thiamine deficiency (WE)	Common findings include symmetric T2 hyperintensities in dorsal medial thalamus, MBs, periaqueductal gray	Unknown
R	40 patients In 16 articles	Unknown (Pediatric and adult cases)	Thiamine deficiency (WE)	Contrast enhancement of the MB may be the only sign of WE	Unknown
RS	50 (22 HT and 28 non-HT)	3-8 days + FU 10 years	HIE	At 10 years of age, MB atrophy was present in 17% in the non-HT group and 50% in the HT group	0.8 mm
RS	235	3-10 days	HIE	abnormal high signal on T2-weighted sequences (13.2%) restricted diffusion (2,5%) atrophy at FU (89%) (in 9 patients)	2 mm
RS	231	< 2 weeks	HIE	abnormal T2 signal intensity with swelling (41%) atrophy at FU (44%) (in 18 patients with abnormal MBs)	Netherlands 1 mm Genoa 2-3 mm
CR	1	8	HIE	Severe bilateral sclerosis of the hippocampal formation as well as atrophy of the fornix and MBs	1.2 mm
DS	20 patients 17 controls	14.05 ± 3.86 16.24 ± 7.05	HIE	MB small in 50% of patients Movement coordination deficit affecting the hand and the wrist in patients exposed to early hypoxic-ischaemic brain injury may be related to reduced volumes of the caudate nucleus	1 mm
RS	18 DA 18 controls	20 (11-35) 19 (10-35)	HIE	Atrophy in DA group (67%) No Atrophy in controls (0%) Associated with memory loss	1 mm
RS	14 CCHS 31 controls	15.1 ± 2.3 15.1 ± 2.4	ССНS	Significant reduced volume in CCHS compared to controls	1 mm
	R R RS RS RS CR DS RS	17 articlesRUnknownR40 patients In 16 articlesR40 patients In 16 articlesRS50 (22 HT and 28 non-HT)RS235RS235RS231CR1DS20 patients 17 controlsRS18 DA 18 controlsRS14 CCHS	17 articlesRUnknownUnknownR40 patients In 16 articlesUnknown (Pediatric and adult cases)RS50 (22 HT and 28 non-HT)3-8 days + FU 10 yearsRS2353-10 daysRS231< 2 weeks	17 articlesdeficiency (WE)RUnknownUnknownThiamine deficiency (WE)R40 patients In 16 articlesUnknown (Pediatric and adult cases)Thiamine deficiency (WE)RS50 (22 HT and 28 non-HT)3-8 days + FU 10 yearsHIERS50 (22 HT and 28 non-HT)3-8 days + FU 10 yearsHIERS2353-10 daysHIERS231< 2 weeks	17 articlesdeficiency (WE)(70%), 13 in the periaqueductal region (57%), 11 in the MBs (47%) and three in the tectal plate (13%).RUnknownThiamine deficiency (WE)Common findings include symmetric T2 hyperintensities in dorsal medial thalamus, MBs, periaqueductal gray matter, and tectal plate.R40 patients In 16 articlesUnknown (Pediatric and adult cases)Thiamine deficiency (WE)Common findings include symmetric T2 hyperintensities in dorsal medial thalamus, MBs, periaqueductal gray matter, and tectal plate.RS50 (22 HT and 28 non-HT)3-8 days + FU 10 yearsHIEAt 10 years of age, MB atrophy was present in 17% in the non-HT group and 50% in the HT groupRS2353-10 daysHIEabnormal high signal on T2-weighted sequences (13.2%) restricted diffusion (2,5%) atrophy at FU (89%) (in 9 patients)RS231< 2 weeks

Cabrera-Mino et al.	RS	25 SVHD	15.9 ± 1.2	SVHD	Significant volume reduction in SVHD compared to	0.9 mm (resampled
(2020) ³³		38 controls	16.0 ± 1.1		controls (100%)	to voxel size 0.2 x 0.2
					Significant lower MoCA and WRAML2 scores in SVHD	x 0.2 mm for volume)
					over controls	
Singh et al. (2019) ³⁴	RS	27 SVHD	15.7 ± 1.2	SVHD	Tissue injury (increased AD, RD and MD values) in SVHD	0.9 mm
		35 controls	15.9 ± 1.2		compared to controls	
Muller et al. (2011) ³⁵	PS	120 patients	1.2 - 18	Masses	Surgical treatment of craniopharyngioma affects rather	Unknown
					radical increase in BMI during the post-surgical 36-	
					month period, especially hypothalamic	
					involvement/lesion of the anterior and posterior	
					hypothalamic area, i.e. involving the MBs and the area	
					beyond MBs, with consequential severely lower QoL	
					scores for social function family	
Freeman et al.	RS	72 patients	22 months –	Masses	Displacement or distortion of MB was unilateral in 68%	2.5 mm; intersection
(2004) ³⁶			31 years		and bilateral in 19%.	gap 0.1 mm
					In 10 patients MB could be identified only unilaterally	
					The intimate relationship to the MB, fornix, and	
					mammillothalamic tract suggests a role for these	
					structures in epileptogenesis associated with	
					hypothalamic hamartomas.	
Vanslambrouck et al.	CR	1 patient	5	Masses	Dolicho-ectasia of the left posterior cerebral artery and	Unknown
(2000) ³⁷					internal carotid artery with compression of the	
					brainstem, MBs and the optic tract.	
Roth et al. (2015) ³⁸	RS	45 patients	Mean 13.9	Masses	Subjects who developed hypothalamic obesity (HO	Unknown
		(22 with HO			showed more frequently lesions affecting the third	
		23 without			ventricular floor, MBs, and anterior, medial (all <0.05),	
		HO)			and most importantly posterior hypothalamus (P <	
					0.01).	
Perez et al. (2021) ³⁹	RCT	35 patients:		Masses	MB intact in only 22% of the patients	1 mm
		- 20 ExQW	16.9 ± 4,7		Greater MB injury associated with greater reductions in	
		- 15 placebo	16.9 ± 4,3		adiposity following GLP-1RA treatment	

125 Ozyurt et al. (2014) ⁴⁰	PS	15 patients 24 controls	Median: 17.3 (6) 17.6 (4.8)	Masses	4 / 5 patients with delayed-recall performance in the clinical range had postoperative hypothalamic lesions involving MBs owing to afferent and efferent projections, injury of the hypothalamus, including MBs, might lead to not only medial temporal and subcortical dysfunction, but also to frontal dysfunction, through diaschisis	Unknown
122 Mortini et al. (2016) ⁴¹	RS	47 patients: - 10 children - 37 adults	34 ± 2 11 ± 1 41 ± 2	Masses	Excluding age, no significant differences between childhood and adult cases were observed for any of the variables. Hypothalamic syndrome was associated with the degree of MB involvement	Unknown
	CD.	1 motions	0	Europe he litie		
130 Goncalves et al. (2014) ⁴²	CR	1 patient	9	Encephalitis	increased T2 and FLAIR signal in the MBs	Unknown
91 Poloni et al. (2009) ⁴³	CR	1 patient	3 months	Metabolic disease	Contrast enhancement of the MBs	Unknown
93 Shah et al. (2020) ⁴⁴	CR	2 patients	26 months 21 months	Metabolic disease	bilateral symmetric optic neuritis and T2 hyperintensity of bilateral MBs, dorsal aspect of medulla and the area postrema	Unknown
90 Friederich (2020) ⁴⁵	CR	2 patients	4 & 8	Metabolic disease	Diffusion restriction in the posterior part of the hippocampi medial left temporal lobe, posterior inferior thalamus and the MBs in Leigh disease	Unknown
92 Inui et al. (2000) ⁴⁶	CR	1 patient	13	Metabolic disease	Low intensity of the MB on T2	Unknown
95 Oikawa et al. (2001) ⁴⁷	RS	15 patients	1-28	Epilepsy	Atrophy and/or signal change of the MB in 3 (20%) all accompanied by hippocampal and parahippocampal atrophy. Patients with abnormalities of the circuit of Papez did not have more severe epilepsy than those without	1.3 mm

Tschampa et al. (2011) ⁴⁸	RS	43 patients	2 – 79	Epilepsy	 20 patients showed hyperintense pulvinar lesions; 4/20 showed atrophy of the MB and fornix (3 ipsilateral, 1 contralateral) 5 patients showed linear defects in the anterior thalamus; there was ipsilateral atrophy of the MB and fornix in all 	Unknown
Kodama et al. (2003) ⁴⁹	RS	34 patients	3 - 54 (mean 28.6)	Epilepsy	Atrophy of the fornix (14.7%), MB's (17.6%), mamillothalamic tract (8.8%), and thalamus ipsilateral to the epileptic focus (11.8%) in patients with temporal lobe epilepsy	Unknown
Urbach et al. (2005) ⁵⁰	PS	45 patients 15 controls	3 - 66 18 - 54	Epilepsy	MB volumes were significantly smaller on the operated- on than on the non– operated-on side and significantly smaller in patients compared with controls. No volume differences of the MBs existed between seizure-free and non–seizure-free patients	1.1 mm
Ferreira et al. (2003) ⁵¹	RS	115 patients	3.5 - 80	Epilepsy	MB volume loss in 5 (11.6%)	Unknown
Mamourian et al. (1993) ⁵²	CR	3 cases: 1 pediatric	4.5	Epilepsy	There was no parenchymal abnormality seen within the temporal or parietal lobes. However, the scan showed absence of the right MB	5 mm
Ng et al. (1997 ⁵³	PS	27 patients 10 controls	6 - 51 23 - 67	Epilepsy	In 19 cases there was unilateral abnormality in the hippocampus (HC); there was a smaller MB on the same side as the abnormal HC in all 19 cases. <i>Smaller fornix in 18 / 19 cases</i>	2 mm
Ozturk et al. (2008) ⁵⁴	RS	178 patients 353 controls	36 (8-69) 49 (7-87)	Epilepsy	Asymmetrical MBs in group with seizures (14%) and without seizures (6.5%)	4-5 mm
Hakyemez et al. (2006) ⁵⁵	PS	32 patients 42 controls	10 – 67 13 – 62	Epilepsy	There was a significant difference in volume of fornix and MBs of the patients versus control subjects (p < 0.005) MBs were abnormal in 37% of patients with bilateral involvement in 15%.	3 mm; gap 1 mm

Kim et al. (1995) ⁵⁶	RS	40 patients 34 controls	13-57 14-56	Epilepsy	Asymmetrically small MB was found in 3% (1 of 33) of the presurgical hippocampal sclerosis group and in 57% (4 of 7) of the postsurgical hippocampal sclerosis group, all 4 accompanied by asymmetrically small fornix on the same side In the control group none of the subjects had asymmetrically small MBs	2-3 mm
Kuzniecky et al. (1999) ⁵⁷	PS	50 temporal lobe epilepsy 10 extra- temporal lobe epilepsy 17 controls	17 – 42 Mean 30 24 - 41	Epilepsy	MB volumetric measurements indicated that 34 (41%) patients with MTLE (Group 1) had evidence of atrophy. Conversely, no patient with extratemporal lobe epilepsy had atrophy of these structures.	1.5 mm; no gaps
Grewal et al. (2018) ⁵⁸	RS	20 patients	17-66	Epilepsy	Mammillary body volume decline after LiTT is associated with better seizure outcomes (average volume reduction of 34.6% in the ipsilateral mammillary body after successful (seizure freedom at 1 year) amygdalo- hippocampal LiTT versus an average decline of only 8.4% in patients with poor outcomes after LiTT.	1 mm
Ciesielski et al. (1999) ⁵⁹	PS	10 patients 10 controls	6.8 – 13.5 6 - 13	latrogenic	Significant reductions in volumetric measures for bilateral MBs in patients compared to controls, significant reductions in prefrontal cortical volume, visual and verbal single-trial memory deficits, and visuospatial, but not verbal, multitrial learning deficits.	1 mm; no gap
Kwan et al. (2015) ⁶⁰	CR	1 patient	16	latrogenic	Clinical and imaging findings suggest that extra- ventricular Ommaya catheter position may lead to a direct methotrexate-induced toxicity to the Papez circuit. intense homogeneous enhancement of the MBs and corresponding hyperintensity in the MBs on T2- weighted images.	Unknown

Anand et al. (2015) ⁶¹	CR	1 patient	28 months	Miscellaneous	Susceptibility within the MBs on T2 gradient echo imaging consistent with hemorrhagic necrosis in a patient with recurrent familial acute necrotizing encephalopathy (ANE1).	Unknown
Herebian et al. (2017) ⁶²	CR	1 patient	6	Miscellaneous	Global brain atrophy, hypointensities of globus pallidus, MBs, and cerebral peduncles, comparable to findings in neurodegeneration with brain iron accumulation disorders.	Unknown
Assis et al. (2018) ⁶³	CR	1 patient	'adolescent'	Miscellaneous	Small focus of encephalomalacia in the anteromedial aspect of the right thalamus, presumed chronic infarct, atrophy of the right MB and asymmetric volume loss of the retrocommissural fibers and anterior pillar of the right fornix. A small gliotic tract could be seen along the expected course of right mammillothalamic tract on a sagittal T1 reformatted image in a patient with complex partial seizures	Unknown

References

- Wani NA, Qureshi UA, Jehangir M, Ahmad K, Ahmad W. Infantile encephalitic beriberi: magnetic resonance imaging findings. *Pediatric Radiology*. 2016;46(1):96-103.
- 2. Kornreich L, Bron-Harlev E, Hoffmann C, et al. Thiamine deficiency in infants: MR findings in the brain. *AJNR American journal of neuroradiology*. 2005;26(7):1668-1674.
- 3. Fattal-Valevski A, Kesler A, Sela BA, et al. Outbreak of life-threatening thiamine deficiency in infants in Israel caused by a defective soy-based formula. *Pediatrics*. 2005;115(2):e233-238.
- 4. Gliebus G, Faerber EN, Valencia I, Khurana DS, Singh SB, Legido A. Ataxia, ophthalmoplegia, and impairment of consciousness in a 19-month-old american boy. *Seminars in Pediatric Neurology*. 2014;21(2):139-143.
- 5. Oka M, Terae S, Kobayashi R, et al. Diffusion-weighted MR findings in a reversible case of acute Wernicke encephalopathy. *Acta Neurol Scand.* 2001;104(3):178-181.
- 6. Darlington WS, Pinto N, Hecktman HM, Cohn SL, Labelle JL. Stem Cell Transplant-Associated Wernicke Encephalopathy in a Patient with High-Risk Neuroblastoma. *Pediatric Blood and Cancer.* 2015;62(12):2232-2234.
- 7. Zuccoli G, Gallucci M, Capellades J, et al. Wernicke encephalopathy: MR findings at clinical presentation in twenty-six alcoholic and nonalcoholic patients. *AJNR American journal of neuroradiology*. 2007;28(7):1328-1331.
- 8. Zuccoli G, Santa Cruz D, Bertolini M, et al. MR imaging findings in 56 patients with Wernicke encephalopathy: nonalcoholics may differ from alcoholics. *AJNR American journal of neuroradiology*. 2009;30(1):171-176.
- 9. Srivastava A, Yadav SK, Borkar VV, et al. Serial evaluation of children with ALF with advanced MRI, serum proinflammatory cytokines, thiamine, and cognition assessment. *Journal of Pediatric Gastroenterology and Nutrition.* 2012;55(5):580-586.
- Vasconcelos MM, Silva KP, Vidal G, Silva AF, Domingues RC, Berditchevsky CR. Early diagnosis of pediatric wernicke's encephalopathy. *Pediatric Neurology*. 1999;20(4):289-294.
- Harter SB, Nokes SR. Gadolinium-enhanced MR findings in a pediatric case of Wernicke encephalopathy. *AJNR American journal of neuroradiology*. 1995;16(4):700-702.
- 12. Cooke CA, Hicks E, Page AB, Mc Kinstry S. An atypical presentation of Wernicke's encephalopathy in an 11-year-old child. *Eye (Lond).* 2006;20(12):1418-1420.
- Sparacia G, Banco A, Lagalla R. Reversible MRI abnormalities in an unusual paediatric presentation of Wernicke's encephalopathy. *Pediatric Radiology*. 1999;29(8):581-584.
- 14. Gupta RK, Yadav SK, Saraswat VA, et al. Thiamine deficiency related microstructural brain changes in acute and acute-on-chronic liver failure of non-alcoholic etiology. *Clin Nutr.* 2012;31(3):422-428.
- 15. Lamdhade S, Almulla A, Alroughani R. Recurrent Wernicke's encephalopathy in a 16 year-old girl with atypical clinical and radiological features. *J Neurol Sci.* 2013;333:e627.

- 16. Liu YT, Fuh JL, Lirng JF, Li AFY, Ho DMT, Wang SJ. Correlation of magnetic resonance images with neuropathology in acute Wernicke's encephalopathy. *Clin Neurol Neurosurg.* 2006;108(7):682-687.
- 17. Arana-Guajardo AC, Cámara-Lemarroy CR, Rendón-Ramírez EJ, Jáquez-Quintana JO, Góngora-Rivera JF, Galarza-Delgado DA. Wernicke encephalopathy presenting in a patient with severe acute pancreatitis. *Jop.* 2012;13(1):104-107.
- Samanta D. Dry beriberi preceded Wernicke encephalopathy: Thiamine deficiency after laparoscopic sleeve gastrectomy. *Journal of Pediatric Neurosciences*. 2015;10(3):297-299.
- 19. Renthal W, Marin-Valencia I, Evans PA. Thiamine deficiency secondary to anorexia nervosa: An uncommon cause of peripheral neuropathy and wernicke encephalopathy in adolescence. *Pediatric Neurology*. 2014;51(1):100-103.
- 20. Lyons DA, Linscott LL, Krueger DA. Non-alcoholic Wernicke Encephalopathy. *Pediatric Neurology.* 2016;56:94-95.
- 21. Khalsa SS, Kumar R, Patel V, Strober M, Feusner JD. Mammillary body volume abnormalities in anorexia nervosa. *Int J Eat Disord.* 2016;49(10):920-929.
- 22. Fei GQ, Zhong C, Jin L, et al. Clinical characteristics and MR imaging features of nonalcoholic Wernicke encephalopathy. *AJNR American journal of neuroradiology*. 2008;29(1):164-169.
- 23. Zuccoli G, Siddiqui N, Bailey A, Bartoletti SC. Neuroimaging findings in pediatric Wernicke encephalopathy: a review. *Neuroradiology.* 2010;52(6):523-529.
- 24. Lallas M, Desai J. Wernicke encephalopathy in children and adolescents. *World Journal of Pediatrics*. 2014;10(4):293-298.
- 25. Zuccoli G, Pipitone N. Neuroimaging findings in acute Wernicke's encephalopathy: review of the literature. *AJR Am J Roentgenol.* 2009;192(2):501-508.
- 26. Annink KV, de Vries LS, Groenendaal F, et al. Mammillary body atrophy and other MRI correlates of school-age outcome following neonatal hypoxic-ischemic encephalopathy. *Sci Rep.* 2021;11(1):5017.
- 27. Molavi M, Vann SD, de Vries LS, Groenendaal F, Lequin M. Signal Change in the Mammillary Bodies after Perinatal Asphyxia. *AJNR American journal of neuroradiology*. 2019;40(11):1829-1834.
- 28. Lequin MH, Steggerda SJ, Severino M, et al. Mammillary body injury in neonatal encephalopathy: a multicentre, retrospective study. *Pediatr Res.* 2021.
- 29. Bindschaedler C, Peter-Favre C, Maeder P, Hirsbrunner T, Clarke S. Growing up with bilateral hippocampal atrophy: From childhood to teenage. *Cortex.* 2011;47(8):931-944.
- 30. Geva S, Jentschke S, Argyropoulos GPD, Chong WK, Gadian DG, Vargha-Khadem F. Volume reduction of caudate nucleus is associated with movement coordination deficits in patients with hippocampal atrophy due to perinatal hypoxia-ischaemia. *Neuroimage Clin.* 2020;28:102429.
- 31. Dzieciol AM, Bachevalier J, Saleem KS, et al. Hippocampal and diencephalic pathology in developmental amnesia. *Cortex.* 2017;86:33-44.
- 32. Kumar R, Lee K, MacEy PM, Woo MA, Harper RM. Mammillary body and fornix injury in congenital central hypoventilation syndrome. *Pediatric Research.* 2009;66(4):429-434.

- 33. Cabrera-Mino C, Roy B, Woo MA, et al. Reduced brain mammillary body volumes and memory deficits in adolescents who have undergone the Fontan procedure. *Pediatric Research.* 2020;87(1):169-175.
- 34. Singh S, Roy B, Pike N, et al. Altered brain diffusion tensor imaging indices in adolescents with the Fontan palliation. *Neuroradiology*. 2019;61(7):811-824.
- 35. Muller HL, Gebhardt U, Teske C, et al. Post-operative hypothalamic lesions and obesity in childhood craniopharyngioma: results of the multinational prospective trial KRANIOPHARYNGEOM 2000 after 3-year follow-up. *Eur J Endocrinol.* 2011;165(1):17-24.
- 36. Freeman JL, Coleman LT, Wellard RM, et al. MR imaging and spectroscopic study of epileptogenic hypothalamic hamartomas: analysis of 72 cases. *AJNR American journal of neuroradiology.* 2004;25(3):450-462.
- 37. Vanslambrouck K, Allegaert K, Goemans N, Demaerel P. Symptomatic unilateral dolicho-ectasia of the in tracranial arteries in a child. *Eur Radiol.* 2000;10(5):759-760.
- 38. Roth CL, Eslamy H, Werny D, et al. Semiquantitative analysis of hypothalamic damage on MRI predicts risk for hypothalamic obesity. *Obesity*. 2015;23(6):1226-1233.
- 39. Perez FA, Elfers C, Yanovski JA, Shoemaker AH, Abuzzahab MJ, Roth CL. MRI measures of hypothalamic injury are associated with glucagon-like peptide-1 receptor agonist treatment response in people with hypothalamic obesity. *Diabetes Obes Metab.* 2021;23(7):1532-1541.
- 40. Ozyurt J, Thiel CM, Lorenzen A, et al. Neuropsychological outcome in patients with childhood craniopharyngioma and hypothalamic involvement. *The Journal of pediatrics*. 2014;164(4):876-881 e874.
- 41. Mortini P, Gagliardi F, Bailo M, et al. Magnetic resonance imaging as predictor of functional outcome in craniopharyngiomas. *Endocrine*. 2016;51(1):148-162.
- 42. Gonçalves LF, Debelenko LV, Bhambhani KJ, Scheid A, Altinok D. Histiocytic necrotizing lymphadenitis (Kikuchi-Fujimoto disease) with CNS involvement in a child. *Pediatric Radiology*. 2014;44(2):234-238.
- 43. Poloni CB, Ferey S, Haenggeli CA, et al. Alexander disease: Early presence of cerebral MRI criteria. *European Journal of Paediatric Neurology*. 2009;13(6):556-558.
- 44. Shah S, Khan N, Lakshmanan R, Lewis B, Nagarajan L. Biotinidase deficiency presenting as Neuromyelitis Optica Spectrum Disorder. *Brain Dev.* 2020;42(10):762-766.
- 45. Friederich MW, Elias AF, Kuster A, et al. Pathogenic variants in SQOR encoding sulfide:quinone oxidoreductase are a potentially treatable cause of Leigh disease. *J Inherit Metab Dis.* 2020.
- 46. Inui K, Akagi M, Nishigaki T, Muramatsu T, Tsukamoto H, Okada S. A case of chronic infantile type of fucosidosis: clinical and magnetic resonance image findings. *Brain Dev.* 2000;22(1):47-49.
- 47. Oikawa H, Sasaki M, Tamakawa Y, Kamei A. The circuit of Papez in mesial temporal sclerosis: MRI. *Neuroradiology*. 2001;43(3):205-210.
- 48. Tschampa HJ, Greschus S, Sassen R, Bien CG, Urbach H. Thalamus lesions in chronic and acute seizure disorders. *Neuroradiology*. 2011;53(4):245-254.
- 49. Kodama F, Ogawa T, Sugihara S, et al. Transneuronal degeneration in patients with temporal lobe epilepsy: Evaluation by MR imaging. *Eur Radiol.* 2003;13(9):2180-2185.

- 50. Urbach H, Siebenhaar G, Koenig R, et al. Limbic system abnormalities associated with Ammon's horn sclerosis do not alter seizure outcome after amygdalohippocampectomy. *Epilepsia*. 2005;46(4):549-555.
- 51. Ferreira NF, De Oliveira V, Amaral L, Mendonça R, Lima SS. Analysis of parahippocampal gyrus in 115 patients with hippocampal sclerosis. *Arquivos de Neuro-Psiquiatria*. 2003;61(3 B):707-711.
- 52. Mamourian AC, Brown DB. Asymmetric mamillary bodies: MR identification. *AJNR American journal of neuroradiology.* 1993;14(6):1332-1335; discussion 1336-1342.
- 53. Ng SE, Lau TN, Hui FK, et al. MRI of the fornix and mamillary body in temporal lobe epilepsy. *Neuroradiology.* 1997;39(8):551-555.
- 54. Ozturk A, Yousem DM, Mahmood A, El Sayed S. Prevalence of asymmetry of mamillary body and fornix size on MR imaging. *AJNR American journal of neuroradiology.* 2008;29(2):384-387.
- 55. Hakyemez B, Yucel K, Yildirim N, Erdogan C, Bora I, Parlak M. Morphologic and volumetric analysis of amygdala, hippocampus, fornix and mamillary body with MRI in patients with temporal lobe epilepsy. *Neuroradiology Journal.* 2006;19(3):289-296.
- 56. Kim JH, Tien RD, Felsberg GJ, Osumi AK, Lee N. Clinical significance of asymmetry of the fornix and mamillary body on MR in hippocampal sclerosis. *AJNR American journal of neuroradiology*. 1995;16(3):509-515.
- 57. Kuzniecky R, Bilir E, Gilliam F, Faught E, Martin R, Hugg J. Quantitative MRI in temporal lobe epilepsy: evidence for fornix atrophy. *Neurology.* 1999;53(3):496-501.
- 58. Grewal SS, Gupta V, Vibhute P, Shih JJ, Tatum WO, Wharen RE. Mammillary body changes and seizure outcome after laser interstitial thermal therapy of the mesial temporal lobe. *Epilepsy Research*. 2018;141:19-22.
- 59. Ciesielski KT, Lesnik PG, Benzel EC, Hart BL, Sanders JA. MRI morphometry of mamillary bodies, caudate nuclei, and prefrontal cortices after chemotherapy for childhood leukemia: Multivariate models of early and late developing memory subsystems. *Behav Neurosci.* 1999;113(3):439-450.
- 60. Kwan BYM, Krings T, Bernstein M, Mandell DM. A novel mechanism of toxic injury to the Papez circuit from chemotherapy. *Journal of Clinical Neuroscience*. 2015;22(4):760-762.
- 61. Anand G, Visagan R, Chandratre S, et al. H1N1 triggered recurrent acute necrotizing encephalopathy in a family with a T653I mutation in the RANBP2 gene. *Pediatr Infect Dis J.* 2015;34(3):318-320.
- 62. Herebian D, Alhaddad B, Seibt A, et al. Coexisting variants in OSTM1 and MANEAL cause a complex neurodegenerative disorder with NBIA-like brain abnormalities. *Europ J Hum Genet*. 2017;25(9):1092-1095.
- 63. Assis ZA, Sevick R. Association of Transsynaptic Degeneration of the Papez Circuit with Anterior Thalamic Encephalomalacia. *JAMA Neurology*. 2018;75(11):1437-1438.