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ON-LINE FIG 1. Deep learning model architecture consisting of a modified ResNext-50 pretrained on ImageNet and fine-tuned to classify indi-
vidual axial slices as no tumor, MB, PF, EP, or DMG (A). The addition of multitask learning to predict relative slice position improves performance
(B). The top 5 performing models are combined to create a final ensemble model for slice-level classification (C). Individual slice predictions are
aggregated to generate scan-level predictions for tumor detection if the proportion of tumor slices exceeded a certain threshold (D). For scans

with tumors, tumor subclass is determined on the basis of a confidence-weighted majority vote across all tumor slices ().
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ON-LINE FIG 2. Confusion matrices showing model and radiologists’ predictions compared with ground truth.

On-line Table 1: Loss contribution of relative-slice position error on slice-level classification accuracy on validation set scans with
tumors®

Loss Contribution Slice-Level Accuracy F, Score False-Negative Proportion
0 0.76 0.70 0.03
10% 0.80 0.70 0.01
20% 0.72 0.70 0.01

?False-negative proportion indicates the proportion of scans analyzed by the model that were falsely determined to have no positive tumor slices.

On-line Table 2: Comparison of T2 and T1-T2-ADC performance on validation-set tumor classification

Sequence F, (Slice-Level) F; (Scan-Level) Accuracy False-Negative Proportion
T2 0.62 0.74 0.77 0.00
T1-T2-ADC 0.46 0.47 0.54 0.12

On-line Table 3: Model classification and detection results on the held-out test dataset

Model Classification Accuracy Classification F; Score  Detection Sensitivity Detection Specificity Detection AUROC
Single (top 1) 0.82 0.69 0.99 0.85 0.99
Ensemble (top 5) 0.92 0.80 0.96 1.00 0.99

Note:—AUROC indicates Area Under the Receiver Operating Characteristic curve.
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