
ON-LINE APPENDIX: METHODS
Subjects and Data
Subjects were initially identified by searching the radiology ar-

chives of our tertiary care university hospital for the diagnoses

included in the study (see below). This set of studies was acquired

between January 2008 and January 2018 at our own institution or

uploaded to our PACS for secondary interpretation from another

institution during the same timeframe. Specific diagnoses were

then confirmed by comprehensive review of individual electronic

medical records, using pathologic data when available or using

follow-up clinical and radiologic assessments across time as the

ground truth. Diagnoses were also independently confirmed by 2

neuroradiologists. Exclusion criteria for the validation sample in-

cluded multiple diagnoses causing abnormalities on FLAIR

within an individual, a history of cranial surgery causing abnor-

malities on FLAIR, or excessive imaging artifacts precluding ac-

curate radiologic interpretation.

Diseases
The 19 diseases included in the validation sample were the follow-

ing: low-grade glioma, high-grade glioma (glioblastoma), pri-

mary CNS lymphoma, metastatic disease, vascular disease (isch-

emia), SVID, Susac syndrome, active multiple sclerosis, inactive

multiple sclerosis, tumefactive multiple sclerosis, neuromyelitis

optica, acute disseminated encephalomyelitis, adrenoleukodys-

trophy, CADASIL, HIV encephalopathy, progressive multifocal

leukoencephalopathy, toxic leukoencephalopathy, posterior re-

versible encephalopathy syndrome, and migraine.

Ground Truth Segmentation
All FLAIR lesions on all native subject space images were hand-

segmented by a radiologist (neuroradiology fellow with extensive

segmentation experience) using ITK-SNAP,1 to provide segmen-

tation masks for the training data and a basis for calculating cri-

terion standard lesion volumes and performance measures for the

validation data. A second radiologist (fourth-year radiology resi-

dent, neuroradiology mini-fellow, also with extensive segmenta-

tion experience) independently hand-segmented all validation

cases in native subject space to provide a measure of interrater

reliability and as a basis for comparison with human perfor-

mance. Diagnoses were not available to the radiologists at the time

of hand segmentation, and only the FLAIR sequence was used.

Detailed Description of Comparison Automated Algorithms
The LST is an automated segmentation algorithm designed for

segmenting MS lesions from input of either 3D gradient-echo

T1-weighted and FLAIR images or from FLAIR images alone.2 We

used the version of LST that uses FLAIR images alone, the “lesion

prediction algorithm,” to make it most analogous to our U-Net,

which also only requires FLAIR images. Furthermore, because

only some of the 19 diseases in our sample are characterized by

abnormal T1 signal, while others have normal T1 signal, this ver-

sion of LST qualitatively provided the best overall performance

across all diseases at the cost of some disease-specific perfor-

mances. The LST method does not require or allow training data,

so we applied the algorithm to all our study subjects.

BIANCA is a method applying a k-nearest neighbors approach

for white matter hyperintensity detection on FLAIR MR imag-

ing.3 This method can use any number of sequences but requires

at least FLAIR images. Again, to make the algorithm most analo-

gous to our U-Net and to not bias the algorithm for particular

diseases, we provided the algorithm with only skull-stripped

FLAIR images. We used the same training/validation data split for

the BIANCA algorithm as was used for our CNN/U-Net. LST and

BIANCA were both implemented on an iMac Pro (2017; Apple,

Cupertino, California), with a 3.2-GHz Intel Xeon CPU and

64-GB RAM, running Matlab R2017b (MathWorks, Natick, Mas-

sachusetts), and Python 3.7.

Statistical Analysis
Comparisons of performance across methods used paired 2-tailed

t tests of Dice scores. We were interested in the performance on a

variety of diseases and lesion appearances, so Dice scores and

other performance measures were stratified across diseases and

lesion volumes. Relationships between performance and lesion

volumes were expressed using linear regressions and Spearman

correlations. Finally, given the importance of the method for ex-

tracting volumetric lesion data, we evaluated the algorithms’ esti-

mations of total lesion volume using subject-by-subject correla-

tions with and forecasting deviations (root mean/median square

percent error) from ground truth. In evaluating the effect of tech-

nical factors on algorithm performance, we split the validation

data according to various variables of interest using a 1-way

ANOVA or 2-tailed t tests for comparisons among groups, de-

pending on the number of groups.

Results
We analyzed performance as a function of total lesion volume and

mean lesion volume across all validation cases for all 4 methodol-

ogies (second human radiologist, CNN, LST, and BIANCA). To

fully evaluate the contribution of false-positives and false-nega-

tives on overall performance (as measured by Dice), we plotted

the false discovery rate and false-negative rate as a function of

lesion volume (On-line Fig 1). In general, both false-positives and

false-negatives decrease with large average and total lesion vol-

ume, though this effect of volume is smaller with the CNN than

with LST or BIANCA. In other words, the CNN is more specific at

low lesion volumes (On-line Fig 1B, -E) and more sensitive at high

lesion volumes (On-line Fig 1C, -F) than the other automated

methods. A similar effect is seen in human performance, though it

is less pronounced for false-negatives—that is, relative to the au-

tomated algorithms, humans have fewer false-negatives at low

lesion volumes (On-line Fig 1C, -F).
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ON-LINE FIG 1. Complete performance profile of segmentation methods according to lesion characteristics, demonstrating the effect of
false-positives and false-negatives on Dice scores, depending on lesion volumes. A, Median Dice scores of cases stratified by total lesion volume,
as in Fig 4B. B, False discovery rate stratified by total lesion volume, as in Fig 4C. C, The false-negative rate stratified by total lesion volume. D–F,
Same measures as in A, B, and C, but cases are grouped according to mean individual lesion volumes. D is same as Fig 4E. Error bars in all panels
represent �1 standard error of the mean across cases. The asterisk denotes P � .01 for the CNN compared with 1 method, and double asterisks
denote P � .01 for the CNN compared with both methods using 1-way group ANOVA and paired 2-tailed t tests. The hashtag separately denotes
P � .05 for human performance compared with CNN.
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ON-LINE FIG 2. CNN segmentations (overlaid in transparent red) of abnormal findings on FLAIR in cases with heterogeneous FLAIR signal. In
these 16 cases, abnormal FLAIR signal contained areas of heterogeneity. In nearly all cases, the entire region of abnormality on FLAIR was
correctly segmented despite the internal heterogeneity, at the same time avoiding incorrect segmentation of the lateral ventricles despite
similar signal intensity to necrotic areas. In 2 cases (last 2 cases, lower right), a few voxels of abnormality were missed because of the apparently
normal signal intensity. Cases with heterogeneous FLAIR signal included 4 cases of primary CNS lymphoma, 4 cases of high-grade glioma, 4 cases
of metastatic disease, 3 cases of tumefactive multiple sclerosis, and 1 case of an ischemic vascular lesion.
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