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ABSTRACT 

BACKGROUND AND PURPOSE: Magnetic Resonance Imaging is widely used to assess disease burden in multiple sclerosis (MS). This 
study aimed to evaluate the effectiveness of a commercially available k-nearest neighbors (k-NN) software in quantifying white 
matter lesion (WML) burden in MS. We compared the software’s WML quantification to expert radiologists’ assessments. 

MATERIALS AND METHODS: We retrospectively reviewed brain MRI examinations of adult MS patients and of adult patients 
without MS and with a normal brain MRI referred from the neurology clinic. MRI images were processed using an AI-powered, 
cloud-based k-NN software, which generated a DICOM lesion distribution map and a report of WML count and volume in four 
brain regions (periventricular, deep, juxtacortical, and infratentorial white matter). Two blinded radiologists performed semi-
quantitative assessments of WM lesion load and lesion segmentation accuracy. Additionally, four blinded neuroradiologists 
independently reviewed the data to determine if MRI findings supported an MS diagnosis. Results were considered significant 
when p < 0.05. 

RESULTS: The study included 32 MS patients (35.4 years ± 9.1) and 19 patients without MS (33.5 years ± 12.1). The k-NN software 
demonstrated 94.1% and 84.3% accuracy in differentiating MS from non-MS subjects based respectively on WML count and WML 
volume, compared to radiologists’ accuracy of 90.2% to 94.1%. Lesion segmentation was more accurate for the deep WM and 
infratentorial regions than for the juxtacortical region (both p <0.001). 

CONCLUSIONS: k-NN-derived WML volume and WML count provide valuable quantitative metrics of disease burden in MS. AI-powered 
post-processing software may enhance the interpretation of brain MRIs in MS patients 

ABBREVIATIONS: MS = multiple sclerosis; k-NN ＝k-Nearest Neighbors; WML ＝white matter lesion; MPRAGE = Magnetization-Prepared 
Rapid Acquisition Gradient Echo; SPACE = Sampling Perfection with Application-optimized Contrasts using a Different Flip Angle 
Evolution; EDSS = Expanded Disability Status Scale. 
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 SUMMARY SECTION 

PREVIOUS LITERATURE: Previous studies evaluating automated white matter lesion (WML) segmentation algorithms, including k-
Nearest Neighbors (k-NN), primarily used 3T MRI datasets and focused on overlap-based metrics like the Dice Similarity Coefficient. 
Few studies explored the algorithm’s real-world performance across varied MRI field strengths or compared outputs directly to 
radiologist assessments, an important factor for clinical applicability. 

KEY FINDINGS: The k-NN algorithm demonstrated high accuracy in WML segmentation, particularly in infratentorial and deep white 
matter. The k-NN software demonstrated comparable accuracy to radiologists in differentiating MS from non-MS subjects, with better 
performance of k-NN-based WM lesion count than WM lesion volume. 

KNOWLEDGE ADVANCEMENT: This study evaluates the use of a k-NN-based WML segmentation algorithm in an external cohort and 
highlights its potential to streamline radiology workflows by providing objective WML quantification, while identifying areas for 
refinement, particularly in juxtacortical lesion segmentation. 

 

INTRODUCTION 

Multiple sclerosis (MS) is an autoimmune disorder of the central nervous system characterized by recurrent episodes of inflammation, demyelination, and 
axonal loss, which can lead to a progressive accumulation of neurologic disability. The McDonald criteria for diagnosing MS rely on clinical evaluation, 
laboratory tests, and presence of lesions on T2-weighted images, particularly fluid-attenuated inversion recovery (FLAIR) MRI sequences1. MRI supports 
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the diagnosis by demonstrating whether the criteria for dissemination in time and space are met1, 2. Lesion segmentation can provide imaging biomarkers 
of disease burden3. However, manual delineation of MRI lesions requires considerable time, resources and technical expertise. 

Automated lesion segmentation methods offer objectivity and speed for lesion detection and quantification and have the potential to improve MS patient 
care4. Artificial intelligence offers powerful solutions for medical image post-processing. Machine Learning can automate complex tasks as image 
segmentation and perform these analyses fast with high accuracy and reproducibility5. K-nearest Neighbors Networks (k-NN), a machine learning algorithm 
that classifies data points by analyzing the ‘k’ most similar neighbors in space, have been employed for lesion segmentation in MS and other disorders 6-
10. Previous studies evaluating automated white matter lesion (WML) segmentation using k-NN algorithms, primarily used 3 Tesla MRI datasets and 
focused on overlap-based metrics like the Dice Similarity Coefficient. Few studies explored the algorithm’s real-world performance across varied MRI field 
strengths or compared outputs directly to radiologist assessments, an important factor for clinical applicability. 

Our purpose was to evaluate the performance of a commercially available k-NN algorithm in quantifying white matter lesion (WML) burden in brain 
MRI examinations of MS patients, compared to expert radiologists, using an external validation dataset 

MATERIALS AND METHODS 

Patient Cohort  

This article follows the STARD reporting guidelines. Institutional review board approval was obtained for this retrospective single-center cross-sectional 
validation study, including a waiver of informed consent. We retrospectively reviewed all brain MRI examinations performed at our hospital system between 
July and September 2021, using a newly implemented MRI protocol for MS (described below) during the first three months of utilization of the protocol.  
Inclusion criteria were the following: 1) Age range = 18-65 years; 2) MS diagnosis1; 3) Brain MRI performed per our institution’s MS protocol, including 
a 3D T2 FLAIR Sampling Perfection with Application-optimized Contrasts using a Different Flip Angle Evolution (SPACE) sequence11 and 3D 
Magnetization-Prepared Rapid Acquisition Gradient Echo (MPRAGE) without intravenous contrast administration; 4) Neurologic evaluation within 1 
month of the MRI. We excluded patients with neurologic disorders other than MS, incomplete studies, or MRI examinations degraded by head motion or 
other artifacts. The degree of disability was assessed by using the Kurtzke Expanded Disability Status Scale (EDSS)12, ranging from 0 to 10, with higher 
scores more severe disability. As a comparison group, we included in the study consecutive patients without MS who were referred to our imaging facilities 
from the neurology clinic between July and September 2021 with the following inclusion criteria: 1) Age range = 18-65 years; 2) Brain MRI interpreted as 
normal for age by the interpreting radiologist and two senior co-authors; 3) Brain MR imaging including FLAIR SPACE and MPRAGE sequences; 4) No 
known neurologic disorder; 5) Normal neurologic evaluation within 1 month of the MR imaging. 

Imaging Protocol and Post-processing 

MRI examinations were performed on 1.5 Tesla and 3 Tesla MR scanners (Magnetom Lumina, Skyra, Aera, Sola, and Avanto, Siemens Healthineers, USA) 
using 16- and 20-channel head coils (see Supplementary Table 1 for scanning parameters). Preliminary mage quality assessments for study inclusion were 
performed by two board-certified neuroradiologists. 

Post-processing was performed offline using AI-Rad Companion Brain MR White Matter Hyperintensities, an AI application that extends AI-Rad 
Companion Brain MR Brain Morphometry by performing segmentation and quantification of white matter hyperintensities. MPRAGE and FLAIR SPACE 
DICOM images were post-processed using cloud-based software. The framework combines two approaches: 1. A supervised method was used to obtain a 
map of potential lesional tissue using a k-nearest neighbors (k-NN) classifier trained on a set of features (signal intensities, spatial location coordinates, and 
tissue prior probabilities) obtained from atlas-based prior probability maps of gray matter, white matter, and CSF;   1. A  Bayesian Partial Volume estimation 
algorithm6-8. The White Matter Hyperintensity segmentation method included the following steps (Supplementary Figure 1): (1) Pre-processing:  Images 
were aligned, skull-stripped, corrected for bias field and intensity normalized; (2) Lesion segmentation was performed by a k-NN classifier, in which each 
voxel was labeled with a value representing the probability of containing lesion or healthy tissue13. Prior probability maps were included to estimate 
realistic concentration maps of normal and abnormal brain tissue. Probability maps are employed to  guide tissue classification (gray matter, white matter, 
cerebrospinal fluid, and lesions) and to compute lesion volumes14. This algorithm automatically evaluates WMH lesion load (count and volume) while 
accounting for the mixing of normal and lesional tissue within voxels due to partial volume effects7. 

The software generated: 1. A color-coded lesion distribution maps overlaid on the sagittal FLAIR SPACE images; 2. A segmentation report of WML 
count (lesion number) and WML volume (lesion volume [mL]) for four brain subregions (periventricular, deep, juxta-cortical, and infratentorial WM). 

Radiologist Imaging Interpretation 

After a training session, two blinded board-certified radiologists, a neuroradiology attending and a neuroradiology fellow (20 and 4 years of experience) 
independently reviewed MPRAGE, FLAIR SPACE, and color-coded lesion maps superimposed on sagittal FLAIR SPACE images on Syngo.via (Siemens 
Healthineers, Malvern, PA, USA) in a randomized manner. During two separate sessions the neuroradiologists performed the following assessments:  

1. Radiologist-assessed Lesion Load: Neuroradiologists independently evaluated multiplanar 3D FLAIR images of each subject in a random order and 
rated lesion load of each brain region (periventricular, deep, juxta-cortical, and infratentorial WM) on a scale ranging from 0 to 3 (0 = none, 1 = mild, 2 = 
moderate, 3 = severe) (Supplementary Figure 2). From these ratings, we calculated the radiologist-assessed WML load, as the sum of the lesion load for 
each region.  

2. Radiologist Assessment of color-coded lesion distribution maps: In a separate session, neuroradiologists evaluated the software performance by 
reviewing the native FLAIR images along with the model’s color-coded lesion distribution maps, which were superimposed on the sagittal FLAIR SPACE 
images. Reader discrepancies were adjudicated during a joint reading session. Radiologists performed the following assessments. 

a. Semi-quantitative assessment of false positive and false negative lesions by brain subregion: Neuroradiologists provided a semiquantitative rating of 
the number of false positive (FP) and false negative (FN) lesions on the k-NN-based color-coded lesion distribution map using the following scale: 0 = no 
FP/FN, 1 = 1-5 FP/FN lesions, 2 = 6-10 FP/FN lesions, 3 = at least 11 FP/FN lesions. 

 b. Semi-quantitative evaluation of lesion size by brain subregion: Neuroradiologists assessed how well the borders of the segmented color-coded lesions 
matched the lesion borders on the native FLAIR images: 1 = underestimation of lesion size, 2 = slight underestimation, 3 = accurate, 4 = slight 
overestimation, 5 = overestimation.  

c. Semi-quantitative ratings of overall WMH segmentation accuracy by brain subregion: Neuroradiologists rated the overall WMH segmentation 
accuracy on a scale of 1 to 5:  1 = very poor, 2 = poor, 3 = fair, 4 = good, 5 = excellent.  

3. Radiologist Diagnosis of MS. Three blinded board-certified neuroradiologists and a neuroradiology fellow (20, 15, 10, and 4 years of experience), 
not involved in the previous evaluations, reviewed multiplanar FLAIR SPACE images in a randomized order, and determined whether findings supported 
a diagnosis of MS. 
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Statistical Analysis 

Age, disease duration, lesion volume, and lesion count were summarized using means, and standard deviations. Independent Mann-Whitney U tests were 
used to compare MS and non-MS on the k-NN WML volume and count. Sensitivity, specificity, and ROC curves for the WML volume and count, with 
area under the curve (AUC) and 95% confidence interval (CI), were also reported. Radiologist-assessed WML load ratings were summarized using medians, 
median absolute deviations, and ranges. Comparisons across brain regions for FP lesions, FN lesions, lesion size accuracy, and overall WML segmentation 
accuracy were performed using Friedman’s two-way analysis of variance by ranks, with Bonferroni correction. These data were summarized with medians 
and median absolute deviations. The associations between radiologist-rated WML load and CNN model WML volume and count were evaluated with 
Spearman’s rank order correlation coefficient (rho) because these variables were not normally distributed. Reader agreement in MS diagnosis was evaluated 
with a two-way random effect, single measures, absolute agreement intraclass correlation coefficient (ICC) and 95% CI. An ROC curve was constructed 
using the mean confidence values of all four readers, with AUC and 95% CI. Two-sided p-values were reported, statistical significance was set at the α < 
.05 threshold. Analyses were conducted with SPSS (version 28, IBM: Armonk, NY). 

 

 

FIG 1. Sagittal native T2 FLAIR SPACE image (A) and color-coded lesion map superimposed on the T2 FLAIR SPACE image (B) demonstrate false 

positive (white arrowhead) and false negative results (black arrowhead) for the juxtacortical region. 

 

 

FIG 2. The ROC curve for all four readers yielded an AUC of .995, 95% CI = .921 - 1.000, p < .001. 

 

 

FIG 3. ROC Curves for the total WMH count (AUC = .997; 95% CI= .924 - 1.000; p < .001) and total WMH volume (AUC = .905; 95% CI = .789 - .969; 
p < .001). 
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FIG 4. The scatterplot shows the k-NN model Total Lesion Volume (mL) and Reader Total Lesion Load values, rho = .91, p < .001. 

 

RESULTS 

Patient population: 32 patients with MS and 19 non-MS subjects were included in the study. See Table 1 for clinical characteristics of the 
study subjects. EDSS ranged between 0 and 6 with a median of 2.5 (MAD = 1.25). 

1. Automated Segmentation Report and Radiologist-assessed Lesion Load:  
Lesion segmentation was carried out using a commercially available tool, with guidance from priori probability maps to inform tissue 
classification. The resulting WML counts and WML volumes (mL) for each brain subregions, and total WML counts and volumes 
(mL), as well as sensitivity, specificity, and accuracy are reported in Table 2.  Radiologist-assessed WML load is reported in Table 
3. There was no significant difference in k-NN lesion count and k-NN lesion volume between MS patients who underwent brain 
MRI at 1.5T and those scanned at 3T, as shown by an independent-samples Mann-Whitney U test (lesion count: U = 78, p = 0.192; 
lesion volume: U = 64, p = 0.061). While lesion volume appeared slightly higher in the 1.5T subgroup, this difference was not 
statistically significant (Supplementary Table 2).  

 

2. Radiologist Assessment of Color-coded Lesion Distribution Map Accuracy:    

a. Semi-Quantitative Assessment of False Positive and False Negative Lesions: In MS patients, the juxtacortical region exhibited 
significantly more FP lesions than the infratentorial region (p < .001) (Figure 1), and the periventricular region more FP lesions than the 
infratentorial (p < .001) and deep WM (p < .001). A similar pattern was observed in the non-MS group, with more FP lesions in the 
juxtacortical (p = .02) and periventricular (p = .005) than the infratentorial regions (Table 4).  

A greater number of FN lesions were found in the juxtacortical region compared to the infratentorial (p = .02) and periventricular (p = .02) 
regions in MS patients. No FN lesions were observed in the non-MS group (Table 4).  

b. Semi-Quantitative Evaluation of Lesion Size by Brain Subregion: In the MS group, lesion size estimation was more accurate in the 
infratentorial (p = 0.01), and deep WM regions (p = .006) compared to the periventricular WM. The k-NN model tended to overestimate 
lesion size in the periventricular and juxtacortical regions (Table 4).  

c. Semi-Quantitative Ratings of Overall WMH Segmentation Accuracy: Radiology readers found that MS lesion segmentation accuracy 
was significantly worse in the juxtacortical area compared to the infratentorial (p = .001) and deep WM (p < .001) regions. For the non-
MS group, readers rated lesion segmentation accuracy as being significantly worse in the periventricular compared to the infratentorial 
region, p = .03 (Table 4). Additionally, no significant differences were observed in lesion segmentation accuracy by region between MS 
patients who underwent brain MRI at 1.5T and those scanned at 3T (Supplementary Table 2). 

 

3. Radiologist Diagnosis of MS:  
The four neuroradiologists demonstrated excellent agreement in classifying subjects as either MS or non-MS, ICC = .86, 95% CI = 
.79 - .91. Accuracy ranged from 90.2% to 94.1%, sensitivity ranged from 84.4% to 93.8%, and specificity ranged from 94.7% to 
100.0% (Supplementary Table 3). The ROC curve for all four readers yielded an AUC of .995, 95% CI = .984 – 1.00, p < .001 
(Figure 2). 

 

4. Classification of MS and non-MS Subjects Using the K-NN Model Report: 
 The k-NN-based total WML count, and volumes (mL) were significantly greater in MS compared to non-MS subjects (both p<.001). 
The total WML count in the deep and infratentorial WM showed respectively excellent (94.7%) and very good sensitivity (89.5%) 
in the classification of MS versus non-MS subjects. The sensitivity of periventricular and juxtacortical WML count were respectively 
78.9% and 73.7%. The specificity of WML count was above 80% across all brain regions (periventricular: 81.3%, juxtacortical: 
87.5%, deep WM: 96.9%) (Table 2). 
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With respect to WML volume (mL), the sensitivity of the deep WM lesion volume was 85.7%. The sensitivity for periventricular, 
juxtacortical, and infratentorial WML volume were respectively 58.8%, 46.2%, and 50.0%. Specificity was above 80% for the 
periventricular (90.6%) and juxtacortical (90.0%) areas (Table 2). The ROC curve for WML count and volume respectively yielded an 
AUC of .997, 95% CI = .924 - 1.000, p < .001, and an AUC of .905, 95% CI = .789 - .969, p < .001 (Figure 3). 

There was a significant association between the k-NN model Total Lesion Volume (mL) and Reader Total Lesion Load values (rho = 
.91, p < .001) (Figure 4). 

DISCUSSION 

We evaluated the performance of a commercially available k-NN algorithm in the segmentation of WML and in the differentiation of MS 
patients from non-MS patients. We found that the accuracy of lesion segmentation varied across brain regions and was most accurate for 
the deep WM and infratentorial regions. The k-NN software demonstrated comparable accuracy to radiologists in differentiating MS from 
non-MS subjects, with better performance of k-NN-based WM lesion count than WM lesion volume.  

K-NN models have been applied to MS lesion segmentation6, 7, 9, 10. The accuracy  of k-NN classification of MS WM lesions can 
be improved by optimizing signal intensity normalization and by adding in the model GM, WM, and CSF tissue priors from healthy 
controls10. Fartaria et al. tested a k-NN lesion segmentation method using 3D FLAIR, MPRAGE, Magnetization Prepared Two Inversion-
contrast Rapid Gradient-echo (MP2RAGE), and 3D Double-inversion Recovery (3D DIR) in MS patients with low disability status 6. The 
combination of routine clinical sequences as MPRAGE and 3D FLAIR was adequate to detect small white matter lesions. However, the 
addition of more advanced sequences such as MP2RAGE and 3D DIR improved the automated detection of juxta-cortical lesions. 
MP2RAGE and 3D DIR have relatively long acquisition times and are not routinely included in clinical MRI protocols for MS. Farfaria 
et al. also compared the k-NN lesion segmentation method using 3D FLAIR and MPRAGE with manual lesion segmentation and two 
open-access software applications, and found that the k-NN method outperformed the others due to improved segmentation of small 
lesions, prone to partial volume effects7. The performance of commercially available k-NN applications for lesion quantification in MS 
requires further investigation.  

Our approach differed from previous studies by having neuroradiologists evaluate the k-NN model’s performance. Additionally, while 
most prior research was conducted using 3T MRI6, 7, 10, our study included scans acquired at both 1.5T and 3T, providing a broader 
evaluation of the model’s performance in clinical settings, where patients are commonly scanned on MRI systems at different field 
strengths. The k-NN model segmentation accuracy varied across different regions. Specifically, the model was accurate in segmenting 
infratentorial and deep WM lesions, with few FP and FN WML reported in these regions. The evaluation of WML size was more accurate 
for infratentorial and deep WML than for periventricular WML. In contrast, juxtacortical and periventricular WML segmentation was less 
accurate, with FP WM lesions reported in both MS and non-MS patients. In addition, FN WM lesions were reported for the juxtacortical 
region of MS patients. Accurate segmentation of the juxtacortical and periventricular lesions is clinically important for MS diagnosis, as 
dissemination in space of white matter lesions is a key criterion but also for monitoring disease progression1. The lower accuracy in 
juxtacortical and periventricular segmentation could be attributed to several factors. The proximity and the similarity in signal intensity of 
the juxtacortical WML and cortex coupled with the inherent complexity and variability of gyral anatomy may have resulted in incorrect 
segmentation (see Figure 1). A potential solution would be to train the software to filter juxtacortical WML based on their shape, typically 
round, ovoid, irregular, or U-shaped, in contrast with the curvilinear cortical signal. Refining the algorithm to recognize these shape and 
location characteristics could improve its ability to distinguish juxtacortical lesions from the surrounding anatomical structures. Additional 
training of the algorithm with a dataset enriched in juxtacortical lesions, might also improve segmentation accuracy in this region. 
Furthermore, the use of MP2RAGE and 3D DIR sequences may improve the automated detection of juxta-cortical lesions6. While these 
sequences are relatively too long to be routinely included in clinical protocols at many institutions, faster acquisition protocols with AI-
powered image reconstruction technology may soon overcome this limit15.  Additionally, occurrences of incorrect periventricular 
segmentation were due to WML size overestimation, mislabeling of the caudate nucleus and normal T2 FLAIR hyperintensity along the 
lateral ventricles. In summary, the k-NN software labeled a higher number of WML than the radiologists, with FP results especially in the 
juxta-cortical and periventricular region. This issue may arise because the algorithm might be overly sensitive to certain features leading 
to incorrect lesion identification. Finding a balance between sensitivity and specificity remains a key challenge in automated segmentation 
tools for clinical use. 

The k-NN model demonstrated high accuracy in differentiating MS from non-MS subjects, with an overall greater accuracy for WM 
lesion count (sensitivity and specificity of 89.5% and 96.9%) compared to WM lesion volume (sensitivity and specificity of 83.8% and 
81.3%). Among the four readers, accuracy ranged from 90.2% to 94.1% with sensitivity ranging from 84.4% to 93.8% and specificity 
ranging from 94.7% to 100.0%. Notably, the k-NN model's performance in terms of sensitivity and specificity is comparable to the range 
observed among human readers, indicating its potential reliability as an adjunct tool in clinical settings.  

The primary benefit of an automated WM segmentation method is its potential to streamline the radiologist interpretation workflow by 
providing consistent and rapid lesion quantification. Annotated FLAIR images and a report of WML count and volume would enable a 
rapid assessment of disease burden, potentially saving time during study interpretation. In addition, quantitative measurements could be 
included in the radiology report as objective markers of disease severity and progression, which in the future could aid clinicians in 
monitoring lesion burden and treatment response over time. Automated tools to improve workflow efficiency would be particularly 
valuable in high-volume clinical settings and for managing follow-up imaging in MS. While we have not specifically tested the utilization 
of the algorithm in the longitudinal assessment of MS lesion burden, this application represents an area where workflow efficiency would 
be highly beneficial.  

Our study has several limitations, including the retrospective study design and small convenience sample size, consisting of all patients 
meeting the inclusion and exclusion criteria during the first three months of implementation of an MS MRI protocol including 3D FLAIR 
and MPRAGE sequences. We acknowledge that the relatively small size of the patient and control cohorts limits the generalizability of 
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the results. Additionally, the MRI scanners used varied across the patient and control cohorts, which introduced variability. However, it is 
important to note that this algorithm has already been tested by the developers on a larger, internally controlled dataset. The aim of our 
study was to evaluate the algorithm in an external cohort to better understand its strengths and weaknesses when applied to clinical cases, 
where variability in imaging protocols and equipment is expected.  The focus of this work is not on developing a novel method, but rather 
on evaluating a commercially available machine learning algorithm. While deep learning segmentation methods are advancing rapidly, 
the purpose of this study is to assess the performance and generalizability of a commercially available machine learning tool when applied 
outside the original training set.  Since our MS sample included predominantly mild/moderate cases (median EDSS = 2.5, range 0-6), 
software performance should be evaluated in a sample including MS patients with more severe disability. Our comparison group consisted 
of patients referred from the neurology clinic with a brain MRI normal for age and neurological examinations, rather than typical healthy 
controls. While this may introduce a bias, as this group does not represent the general population, these patients were deemed adequate as 
a control group for our study purposes. The k-NN model produced color-coded lesion distribution maps overlaid only on sagittal FLAIR 
images. The reviewers noted that additional coronal and axial images would have been beneficial, especially for infratentorial assessment. 
We evaluated the accuracy of the model in differentiating MS from non-MS subjects as a secondary measure of the segmentation 
algorithm’s accuracy. Our aim was to evaluate how well the algorithm’s segmentation aligns with MS-related patterns identified by 
radiologists, not to imply that the algorithm alone could serve as a stand-alone diagnostic tool. We did not perform manual segmentation 
of MS lesions, nor did we evaluate the overlap between lesion masks generated by the automated algorithm and manually defined ground 
truth using the Dice Similarity Coefficient, as has been done in previous studies assessing algorithm performance 6, 7 . Instead, our goal 
was to compare the software’s output with the type of semi-quantitative assessments of white matter hyperintensity burden that are 
commonly employed in clinical practice. This study is structured to assess the practice utility of the software in a clinical setting where 
radiologists typically provide a semi-quantitative assessment. We evaluated the performance of the algorithm in the detection of WMH in 
MS patients, and we did not test its application in the segmentation of WMH secondary to other pathologies. As a result, our reported 
findings of regional performance differences are relevant only to the detection of lesions patterns in MS, not those associated with other 
conditions. The control group consisted of non-MS patients with brain MRI scans that were normal for age. This study design does not 
capture the more complex diagnostic scenarios encountered in clinical practice, such as distinguishing MS from other conditions with T2 
hyperintense lesions (e.g., chronic small vessel disease, other demyelinating processes). While this design allows for a controlled 
evaluation of the algorithm's performance, it may limit the general applicability of the results. Future studies should focus on testing the 
algorithm in cohorts with more diagnostically challenging differential diagnoses to better assess its potential utility in clinical workflows. 
In this study, we did not integrate the tool into our clinical workflow or evaluate its impact on the speed of study interpretation. Future 
studies could explore how the tool might influence workflow efficiency, diagnostic accuracy, and overall clinical utility when integrated 
into routine practice. Despite these limitations, we believe that our study provides valuable insight into the effectiveness of the software 
in the evaluation of MS patients. 

 

Table 1: XYZ. 
Column A  

Total A X 
Total B YZD 
C A (XY.Z%) 
D B (CD.E%) 

Age (yr)  
Z 54 
D 22–82 

Total Z 243 
Median 5 
Range 234-235 

ABCDE  
A B 
B A 
C C 
D D 
E E 
Z E 
 

CONCLUSIONS 

AI-powered post processing software may be a useful adjunct to the interpretation of brain MRIs in MS. The information obtained 
regarding cumulative WML volume and count may serve as quantitative metrics of disease burden. K-NN tools for longitudinal WM 
lesion analyses will improve the efficiency of the radiologist workflow and serve as a valuable adjunct to radiologist interpretation. 
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SUPPLEMENTAL FILES 

Supplementary Table 1.  

Representative scanning parameters of the sagittal MPRAGE and T2 FLAIR SPACE sequences at 1.5 Tesla and 3 Tesla (1.5T/3T). 
  

 
MPRAGE 

1.5T/3T 

T2 FLAIR SPACE 

1.5T/3T 

TR 1900/1900 ms 7000/5000 ms 

TE 2.91/2.54 ms 406/386 ms 

TI 1100/900 ms 2050/1800 ms 

Flip angle 15°/ 9° 120°/120° 

Bandwidth 130/220 Hz/Px 651/750 Hz/Px 

Voxel size 1 x 1 x 1 mm3 1 × 1 × 1 mm3 
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Supplementary Table 2.  
 

 Multiple Sclerosis (3 
Tesla MRI) 

Multiple Sclerosis (1.5 
Tesla MRI) 

p-value4 

Number of subjects 22 10  

Sex (M/F) 3/19 2/10  

 Age (yr.)1 35.2 ± 8.9 35.8 ± 10.0  

Subtype of MS 
2RR/PP/SP/unknown 

21/0/0/1 8/0/0/2  

Years since initial MS 
diagnosis (yr.)1 

6.5 ± 5.5 8.0 ± 7.9  

EDSS3  2.5, 0-3  2, 1.13-2.85  

k-NN total WM lesion 
volume1  

9.94± 9.46 16.3 ± 16.7 .061 

k-NN total WM lesion 
count1 

37.1 ± 31.4 29.2 ± 5.0 .192 

Periventricular WM Lesion 
Segmentation Accuracy 

3.5, 3 - 4 3.75, 3.38 - 4 .684 

Juxta-cortical WM Lesion 
Segmentation Accuracy 

3, 2.5 - 3.5 2.75, 1.38 - 3.13 .171 

Infratentorial Lesion 
Segmentation Accuracy 

5, 3 - 5  4, 3 – 4.63 .455 

Deep WM Lesion 
Segmentation Accuracy 

4, 3.88 - 4.63 4.5, 3.88 – 4.5 .660 

1 Mean ± Standard Deviation 
2 Subtypes of MS: Relapsing remitting (RR), primary progressive (PP), secondary progressive (SP), and unknown subtype. 
3 Median, interquartile range 
4 p-values not corrected for multiple comparisons 

 

Supplementary Table 3.  

Accuracy, sensitivity, and specificity for all radiologists. 

Readers Accuracy Sensitivity Specificity 

Reader 11 94.1% 93.8% 94.7% 

Reader 21 92.2% 87.5% 100.0% 

Reader 31 94.1% 93.8% 94.7% 

Reader 42 90.2% 84.4% 100.0% 

    

1Neuroradiology Attendings 

2Neuroradiology Fellow 
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Supplementary Figure 1.  

 

Figure Legend: Schematic diagram of the lesion segmentation algorithm, divided into three main steps: preprocessing (white background), 

classification (light gray background), and postprocessing (dark gray background). MPRAGE, FLAIR, DIR, and MP2RAGE are the 

abbreviations for the used image contrasts. Please note that in our study we employed only MPRAGE and FLAIR images. pWM, pGM, and 

pCSF are representative of the prior probabilities (PRIORs) of the respective brain tissues: white matter, gray matter, and cerebrospinal fluid. 

Reproduced with permission from reference 7 (Fartaria MJ, Bonnier G, Roche A, et al. Automated detection of white matter and cortical 

lesions in early stages of multiple sclerosis. J Magn Reson Imaging 2016;43:1445-1454). 

 

 

Supplementary Figure 2. 

 

 
Figure Legend: Neuroradiologists evaluated multiplanar 3D FLAIR images of each subject in a random order and rated lesion load of each 

brain region (periventricular, deep, juxta-cortical, and infratentorial WM) using a 3-point Likert scale. The figure illustrates examples of normal 

brain (A), mild (B), moderate (C), and severe (D) periventricular white matter lesion burden. 

 

 


